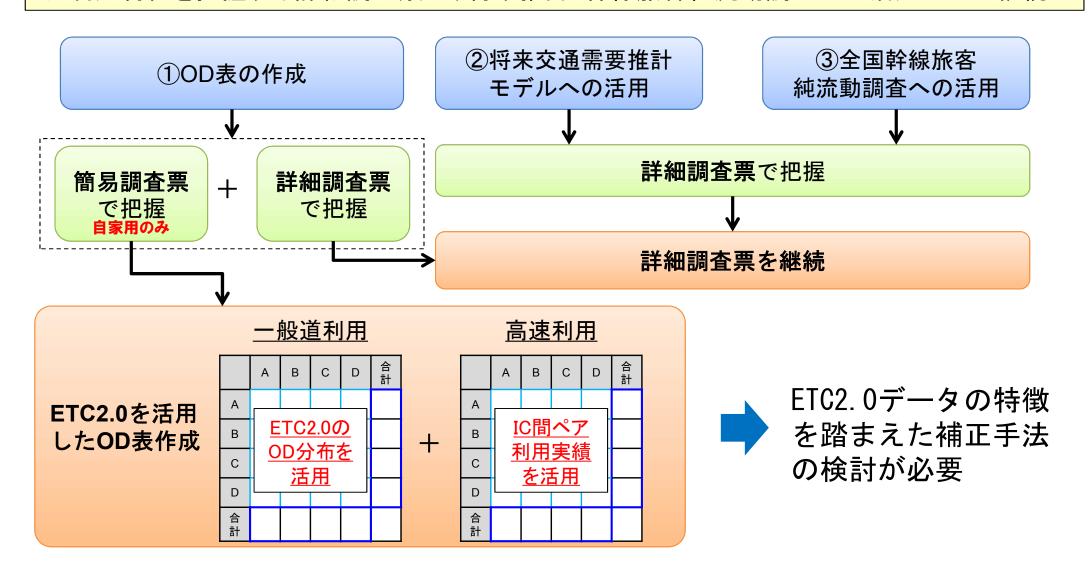
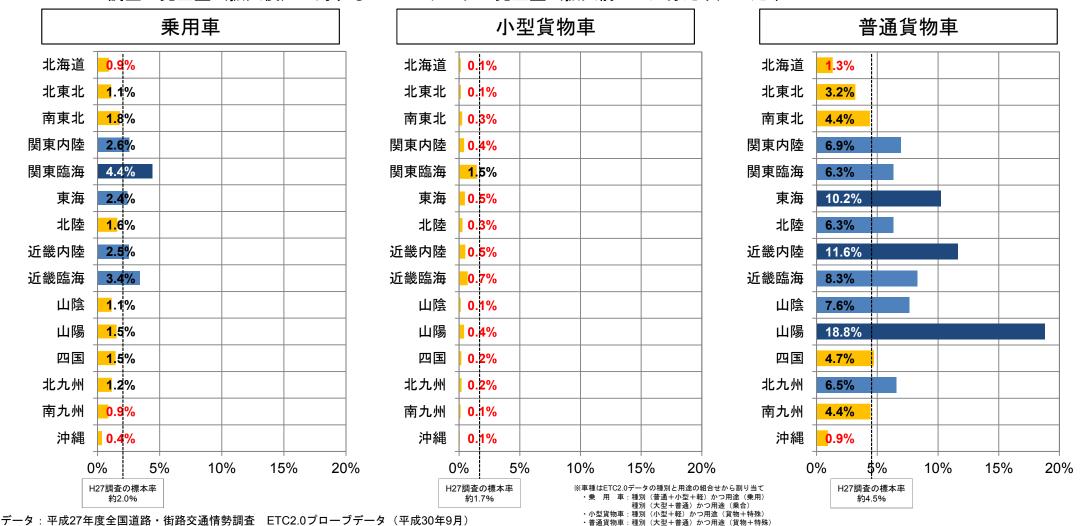
ETC2.0データを活用したOD調査 の方向性


令和元年8月9日

国土交通省 道路局 企画課 道路経済調査室

ETC2.0データのOD調査への活用検討

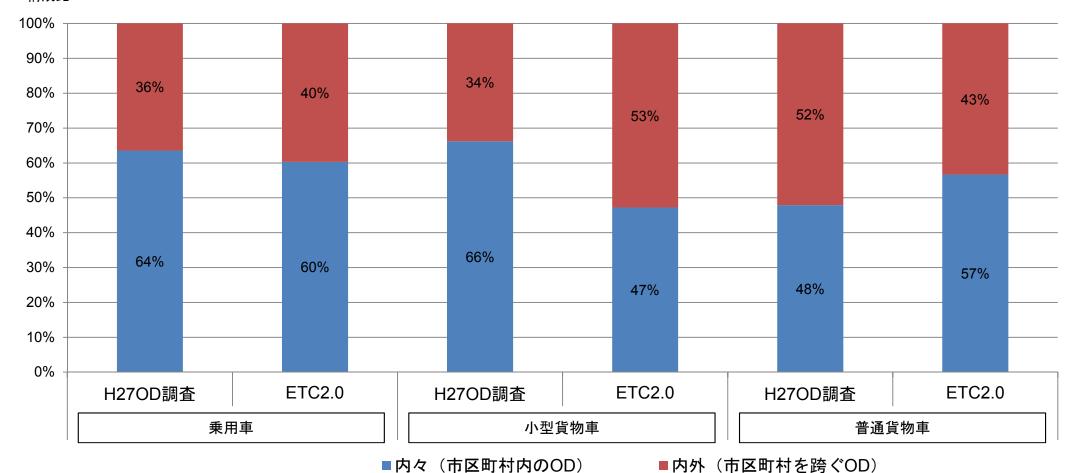
- 〇 既往調査の活用目的を満足することを基本とし、ビックデータ活用により一部を効率化
- OD表作成に用いる簡易調査票は、ETC2.0プローブによる代替を検討
- 利用特性を把握する詳細調査票は、将来推計・幹線旅客純流動調査への活用のため継続


ETC2.0データの特徴

〇 ETC2.0データは、道路利用者への情報提供、特車許可、高速料金の割引等への活用を目的としたものであり、OD調査に活用する際には、以下の違いが生じることが想定される。

乖離要因	仮説	検証指標	
普及台数の偏り	ETC2.0データは、地域の普及台数の違いで、 データの取られ方に地域的な偏りがある	● 地域別発生量(車種別)	
データ取得の仕組み に起因する偏り (路側機を通過することが条件)	ETC2.0データは、路側機から離れた地域のトリップや、路側機を通過しないトリップを捕捉しづらい(地域内トリップ等)	● 内々・内外比率 (路側機設置状況との関係)	
利用特性の偏り	ETC2.0装着車は高速道路を利用しやすく、 長距離移動が多い	トリップ長分布高速道路利用率 ※今後検証	
その他	ETC2.0データは、目的トリップを把握できないため、トリップ判別方法の条件によって、値が変動する	● トリップ長分布 (時間閾値変更の影響)	
	ETC2.0データは、その他システムに起因する要因により、実データとの乖離がある		

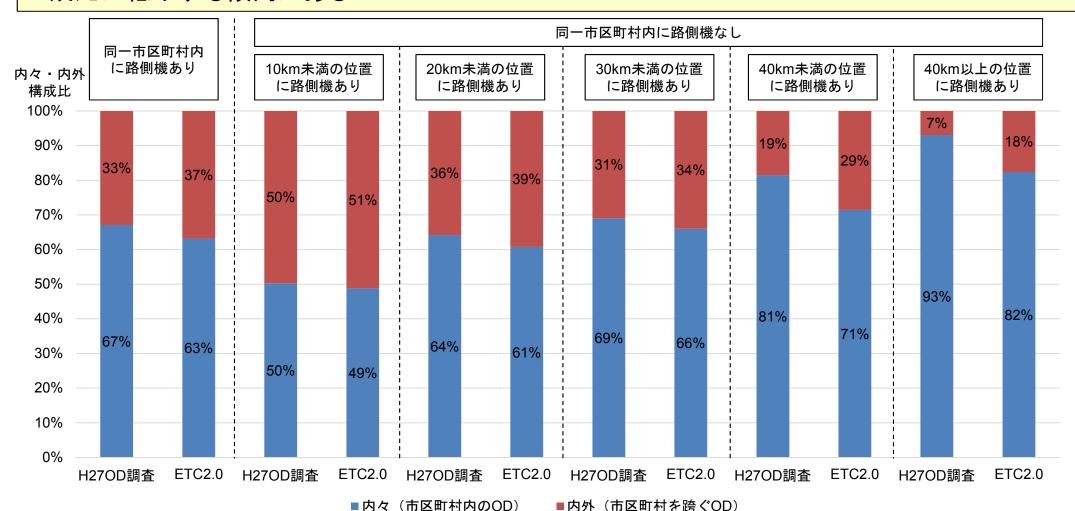
普及台数の偏り地域ごとの発生量の比率


- 仮説:ETC2.0データは、地域の普及台数の違いで、データの取られ方に地域的な偏りがある
- 検証結果: H270D調査と比較して、ETC2.0データの取得が極めて少ないブロックも存在する
- ■ETC2.0データの発生量取得状況(ETC2.0/H27OD調査) H27OD調査の発生量(拡大後)に対するETC2.0データの発生量(拡大前・1日あたり)の比率

データ取得の仕組みに起因する偏り 内々・内外比

- 仮説: ETC2.0データは、内々トリップを捕捉しづらい
- 〇 検証結果: ETC2.0データは、乗用車及び小型貨物車の内々トリップ構成比がやや低い

内々 内外 構成比

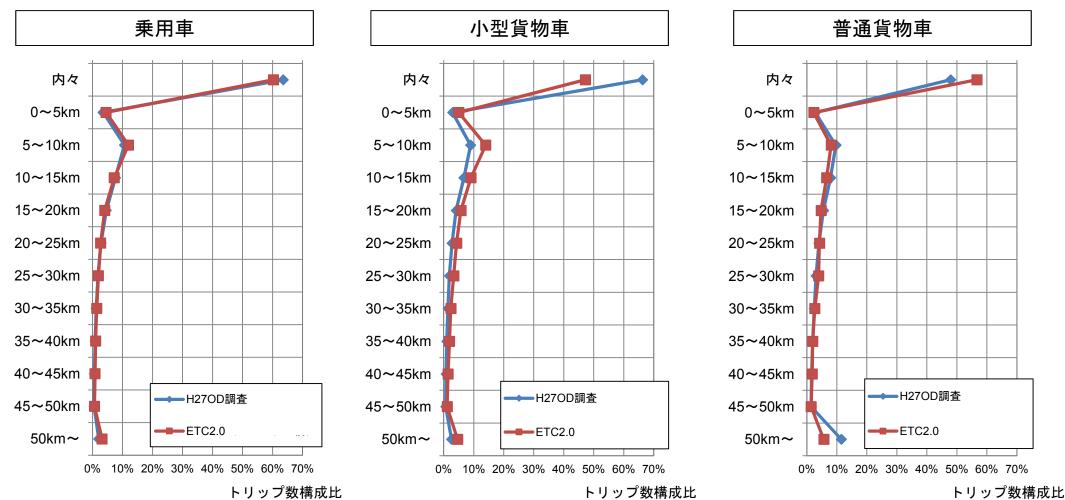


[※]車種はETC2.0データの種別と用途の組合せから割り当て 用 車:種別(普诵+小型+軽)かつ用途(乗用)

種別(大型+普通)かつ用途(乗合) ・小型貨物車:種別(小型+軽)かつ用途(貨物+特殊) 普通貨物車:種別(大型+普通)かつ用途(貨物+特殊)

データ取得の仕組みに起因する偏り 路側機からの距離帯別 内々・内外比

- 仮説: ETC2.0データは、路側機からの距離が遠いほど地域内トリップを捕捉しづらい
- 検証結果: ETC2.0データは、路側機までの距離が約30kmを超える地域は内々トリップの構成比が低下する傾向にある



※車種はETC2.0データの種別と用途の組合せから割り当て ・乗 用 車:種別(普通+小型+軽)かつ用途(乗用) 種別(大型+普通)かつ用途(乗合)

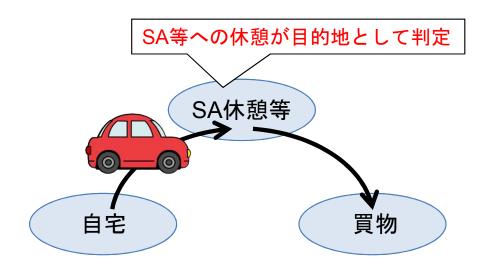
・小型貨物車:種別(小型+軽)かつ用途(貨物+特殊) ・普通貨物車:種別(大型+普通)かつ用途(貨物+特殊) データ: 平成27年度全国道路・街路交通情勢調査、ETC2.0プローブデータ(平成30年9月) ※車種は乗用車のみ、路側機までの距離は市区町村中心からの直線距離

利用特性の偏りトリップ長分布

- 仮説: ETC2.0装着車は、高速道路を利用しやすく、長距離移動が多い
- 検証結果: ETC2.0データは、距離帯分布がわずかに異なっており、また、車種ごとにもやや 異なる傾向がある

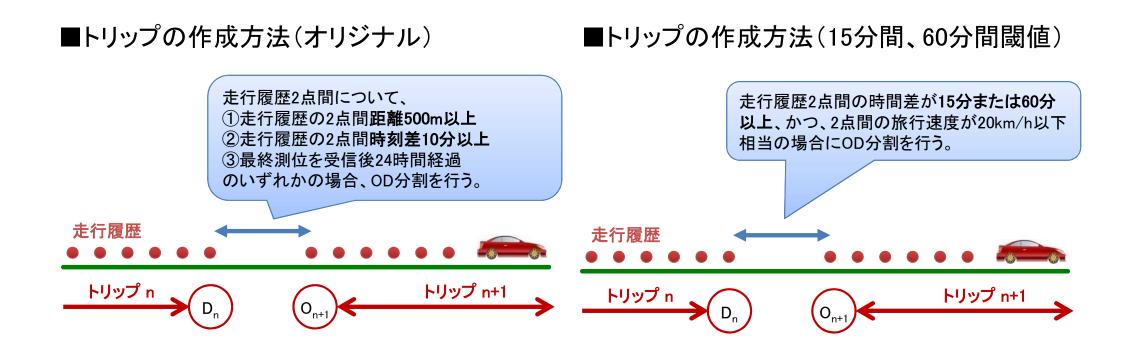
車:種別(普诵+小型+軽)かつ用涂(乗用) 小型貨物車:種別(小型+軽)かつ用途(貨物+特殊)

データ: 平成27年度全国道路・街路交通情勢調査、ETC2.0プローブデータ(平成30年9月)

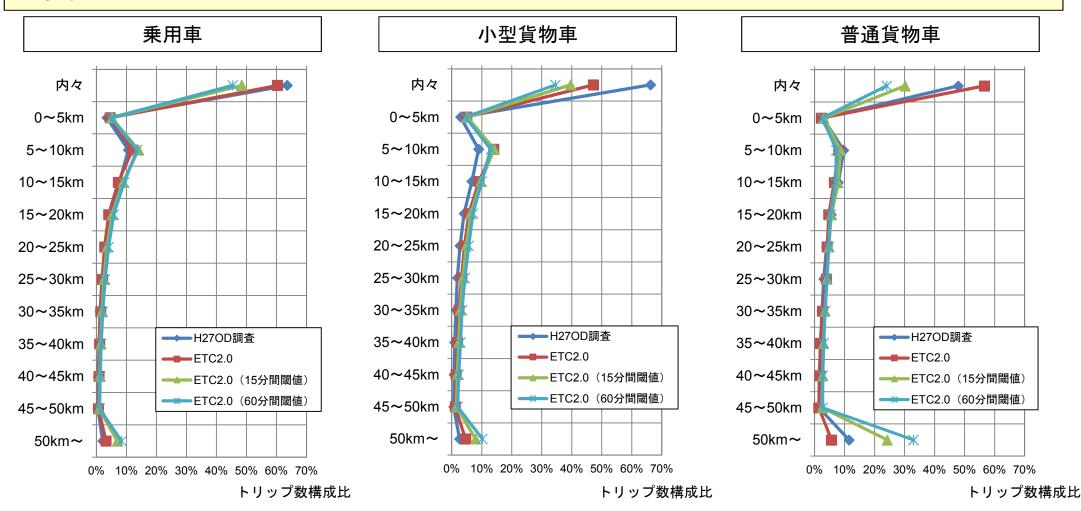

OD調査とETC2.0データのトリップの違い

- ETC2.0では、トリップの目的を把握することができないため、一定時間以上の滞在をトリップの切れ目と定義した場合、必ずしも目的トリップとはならない
- 例えば、10分以上の滞在を閾値としてトリップの切れ目と定義する場合、SA等への滞在がトリップとして定義されてしまう可能性がある

■OD調査の場合


目的トリップではないため目的地としない SA休憩等 目宅 買物

■ETC2.0で生じる留意点


ETC2.0データのトリップ判別方法の検討

- ETC2.0の分布パターンとして以下を設定
 - オリジナル ←短距離のODが多く、トリップ数が多い傾向
 - 15分閾値
 - 60分閾値

判別方法の違いによるトリップの特性 トリップ長分布

- 仮説:トリップ判別に用いる時間閾値の違いに応じて、距離帯別構成比が変化する
- 〇 検証結果: 15分閾値の場合、短距離トリップが多く、60分閾値の場合、長距離トリップが多く なる

※車種はETC2.0データの種別と用途の組合せから割り当て
 ・乗 用 車:程別(普通+小型+軽)かつ用途(乗用)種別(大型+普通)かつ用途(乗合)・小型貨物車:種別(小型+軽)かつ用途(貨物+特殊)

データ:平成27年度全国道路・街路交通情勢調査、ETC2.0プローブデータ(平成30年9月)

ETC2.0データの検証結果

乖離要因	仮説	検証結果
普及台数の 偏り	ETC2.0データは、地域の普及台数の違いで、データの取られ方に地域的な偏りがある	● ETC2.0データは、H27OD調査と比較して、取得が極めて少ないブロックも存在する。(北海道、南九州、沖縄等) ⇒地域別発生量を精度高く捉えるための方法、それを前提とした分布補正手法の検討が必要
データ取得の 仕組みに起因 する偏り (路側機を通過 することが条 件)	ETC2.0データは、路側機から離れた地域のトリップや、路側機を通過しないトリップを捕捉しづらい(地域内トリップ等)	 ● ETC2.0データは、地域内々トリップの構成比がやや低い。その傾向は最寄り路側機までの距離が遠くなるほど顕著となる。 ⇒内々・内外比を精度高く捉えるための方法、それを前提とした分布補正手法の検討が必要
利用特性の偏り	ETC2.0装着車は高速道路 を利用しやすく、長距離 移動が多い	● ETC2.0データは、距離帯分布がわずかに異なっており、また、車種ごとにもやや異なる傾向がある。 ⇒高速利用有無を分けて利用特性の分析を行うことや、 距離帯分布の補正手法の検討が必要
その他	ETC2.0データは、目的トリップを把握できないため、トリップ判別方法の条件によって、値が変動する	● トリップ判別は、設定する時間閾値の違いに応じて データ特性がわずかに変化してしまう ⇒トリップ長分布等が、目的トリップの傾向に一定程度 整合するようなトリップ判別方法の検討が必要

R2年度 OD調査の方針案

- R2調査では、ETC2.0データを活用したOD表作成手法の確立 に焦点をあてることとし、<u>サンプル数はH27調査と同規模</u>で設 計することを基本とする。
- O R2調査を契機に、<u>ETC2.0からODデータを作成する技術開発</u> や必要なシステム改修を実施し、<u>ODデータの常時観測化</u>を目 指す
- 〇 なお、引き続き、R2調査実施までの期間で、<u>ETC2.0データ</u> <u>を活用したOD表の補正・細分化手法</u>を検討し、その範囲内で サンプル数の縮減を検討する。

(参考) OD調査とETC2.0プローブの車種対応

■OD調査で必要な車種区分

OD調査における分類		分類番号	
乗用車	バス	200	
	普通	300	
	軽・小型	500,700	
小型貨物車	軽・小型	400,600	
普通貨物車	普通	100	
	特種	800	

※分類番号

(参考)ETC2.0の車種割り当て

		用途				
		1乗用	2貨物	3特殊	4乗合	
	0軽二輪		OD調査対象外			
種別	1大型		普通貨物車 特種車		バス	
	2普通	普通 乗用車			乗用車(タクシー)	
	3小型	軽∙小型	軽·小型 貨物車			
	4軽自動車	乗用車				