次世代社会インフラ用ロボット開発・導入の推進(災害調査技術:トンネル災害) 国土技術政策総合研究所での現場検証の開催について(連絡)

国土交通省「次世代社会インフラ用ロボット開発・導入の推進(災害調査技術)」では、国土技術政 策総合研究所において、下記のとおり現場検証を実施いたします。

見学を希望される方は、以下をご確認の上、お申し込みください。

記

1. 実施概要

① 実施日時

場所	日時		
国土技術政策総合研究所内 実大トンネル実験施設	平成 27年1月 08 日		
(茨城県つくば市)	09:45~17:00		

② 実施技術(予定)

場所	分 野	実証技術 (別紙1参照)
国土技術政策総合研究所内 実大トンネル実験施設 (茨城県つくば市)	[4] トンネル崩落状態及び規模を把握するための高精細な画像・映像等の情報の取得※	6技術

^{※)}なお、「分野[3] 爆発等の危険性を把握するための引火性ガス等に係る情報の取得」については、 今年度評価対象の技術がございません。

2. 見学申し込み方法

現場検証の見学を希望される方は、別紙3に必要事項をご記入の上事務局までファックス、または専用ポータルサイト(http://www.c-robotech.info)にてお申しこみ下さい。

尚、国土技術政策総合研究所敷地内となりますので、事前の入所登録が必要です。必ず期日までにお申し込みください。

3. 注意事項

- ・ 現地集合,現地解散とします。お申込みがない場合は、見学できません。
- ・ 見学者エリアを設置しますので、見学者エリア内から見学してください。
- ・ 当日は必ず現場検証担当者の指示にしたがってください。

4. 問合せ先

本件についてのお問い合わせは、下記担当者までお願いいたします。

担当:一般財団法人先端建設技術センター

吉田・荒瀬

TEL: 03-3942-3992

当日連絡先:080-1020-8448 (荒瀬)

次世代社会インフラ用ロボット 災害調査 現場検証対象技術一覧

(順不同)

No.	技術名称	副題	応募者	共同開発者	対象技術			_	ロボットを構成する要素技術		
140.	(ロボット技術・システム名称)				[1]	[2]	[3]	[4]	移動機構	情報取得機構	取得情報等
	受動適応クローラロボット「Scott」による 災害調査システム	愛知工業大学	エヌ・ティー・シー㈱ 中日本ハイウェイ・エンジニアリング 名古屋㈱			0		クローラ	ガス検知器	引火性ガス濃度	
	火管調査ンステム		サンリツオートメイション(株) (株)エーアイシステムサービス				0	クローラ	CMDカメラ	2D動画	
2	長距離遠隔操作型トンネル災害調査ロボット	3Dスキャナによる遠隔操作支援システムを搭載した 災害調査ロボット	清水建設㈱	-				0	油圧ショベル (0.45m³クラス)	WEBカメラ マルチガスモニター 3Dスキャナ(状況) 測域センサ(計測)	2D動画 3D画像 坑内環境情報 崩落規模
3	小型遠隔操作災害対応移動装置の研究	災害現場特有の瓦礫、段差を踏破して目的地に移動 し、災害現場の可燃性ガス分布、酸素温度などを計測 し可視化のためのデータ処理を行い、発災から復旧に 至るトータルコストを低減し安全で安心な社会の実現 に貢献する。	則 こ (株移動ロボット研究所	移動ロボット研究所 神奈川県産業技術センター			0		クローラ	ガス検知器	引火性ガス濃度
ŭ	開 発							0	クローラ	CCDカメラ 揺動型3D測域セン サ	2D動画 被災空間認知とマッ ピング 3次元可視化データ
4	引火性ガス雰囲気内探査ロボット	櫻工号(防爆仕様)	三菱重工業㈱	千葉工業大学			0		クローラ	ガス検知器	引火性ガス濃度
5	自走式3次元トンネル計測ロボットシステ ム	欠元トンネル計測ロボットシステ _ 早稲田	早稲田大学 (輸アドイン研:	他でいた。江東京に			0		車輪移動ロボット	ガス検知器	引火性ガス濃度
				(本) ドイノ切(丸の)				0	車輪移動ロボット	CCDカメラ 3Dスキャナ	動画 3D形状
6	マルチダクトファンコプタ型調査ドローン	-	徳島大学	㈱エンルート				0	マルチコプター	CCDカメラ LRF	2D動画 SLAMデータ

※技術の詳細内容は専用サイト (>現場検証技術 DB ○災害調 査部会)をご覧下さい。

<専用サイト>http://www.c-robotech.info/

対象技術凡例 [3]:トンネル崩落のガス等情報取得 [4]:トンネル崩落の画像取得

<報道向け公開時間帯(1月8日) スケジュール>

技術名称	法人名	検証スケジュール
受動適応クローラロボット「Scott」による災害調査システム	愛知工業大学	10:00~10:45
小型遠隔操作災害対応移動装置の研究開発	㈱移動ロボット研究所	10:50~11:35
自走式 3 次元トンネル計測ロボットシステム	早稲田大学	11:40~12:25
マルチダクトファンコプタ型調査ドローン	徳島大学	13:30~14:15
引火性ガス雰囲気内探査ロボット	三菱重工業㈱	14:20~15:05
長距離遠隔操作型トンネル災害調査ロボット	清水建設㈱	15:10~15:55

①国総研内実大トンネル実験施設 現場検証会場位置図(土木研究所と同じ敷地内です)

Fax 送信票

災害調査技術 国土技術政策総合研究所 現場検証見学会の申込み

宛先:

先端建設技術センター 企画部 荒瀬 宛 Fax 03-3942-0424

項目 (ア)参加希望現場 国総研 実大トンネル実験施設 1 2 (イ)見学者氏名・所属 3 (見学者の氏名と所属を **(4**) ご記入願います) ※参加者が5名を超える場合は、適宜記入欄を追加してください。 氏 名: 所属: (ウ)代表者連絡先 電 話: F A X: e-mail: (工)見学希望日 ①車 (駐車台数: 台) (才)交通手段 ②その他