脱炭素社会に向けた住宅・建築物における 省エネ対策等のあり方・進め方 検討会

提言資料

2021年7月20日 東北芸術工科大学

竹内昌義

今回提案の国交省案は太陽光発電なし。 2010年から続くZEH、ZEBと違う議論 (以前の資料で「平均でZEH、ZEB」と書いてあるのは太陽光発電付)

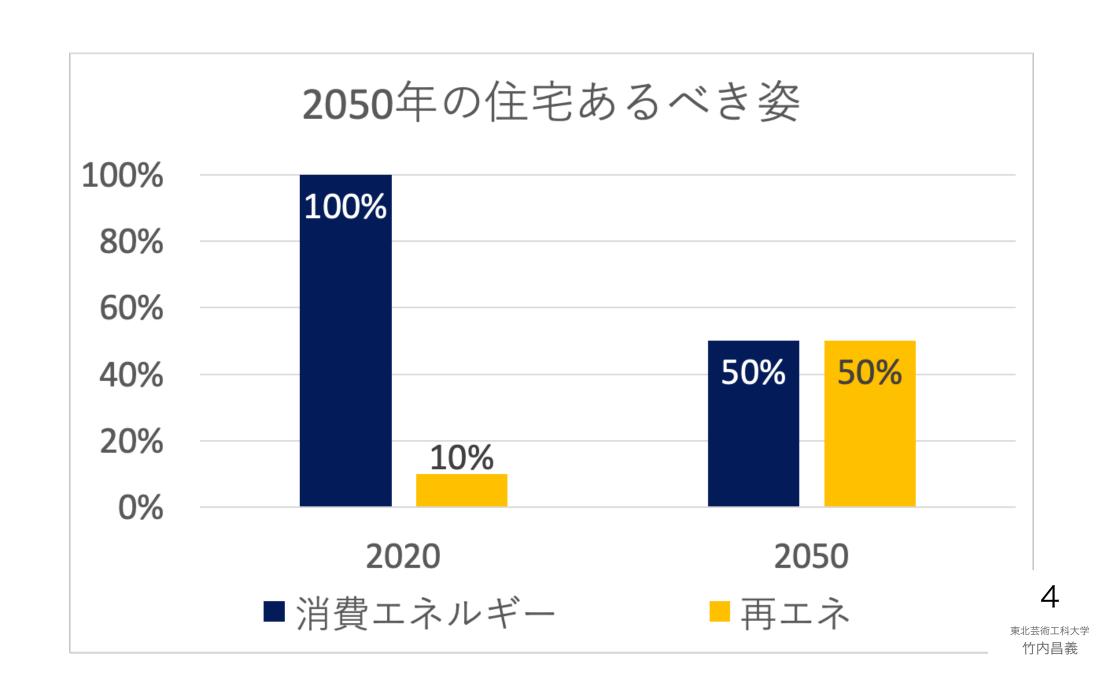
2050年のあるべき姿

2030年NDC 46%の根拠

削減量の目標を住宅着工数に合わせ排出量削減。

この検討会は2050年脱炭素からのバックキャスティング 住宅だけ(自力)で2050年脱炭素にすることが可能

住宅だけ(自力)で2050年脱炭素とするべき


断熱+設備の効率化+再生可能エネルギーをバランスよく 20% +30% +50%

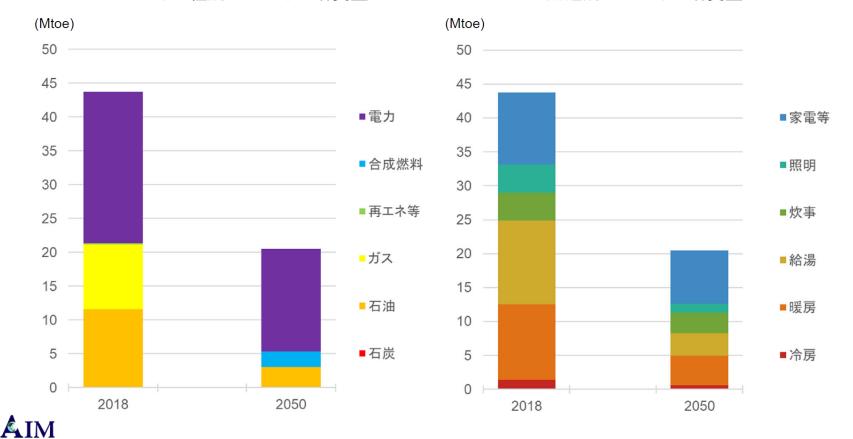
VISION 50 + 50

省エネルギー50%+再生可能エネルギー50%

前提条件は、

- 1. 2050年ストック数は4700万戸で計算(AIM案の前提条件通り)
- 2. 2050年に一次エネ50%、再エネ50%(正確には戸建て6kW共同2.2kW搭載でグロスでは130%分の再エネ導入量として、自家消費分30%相当分のダブルカウント除去済)。
- 3. 未対策ケースは、対策ケースと2020年の平均値とする。 (これは円グラフに関係するが、50%等の絶対量には関係なし。)
- 4. 設備効率は2050年には現状の30%省エネ化、残りの20%を建築物の省エネ政策で賄う。
- 5. 一次エネ変換係数は2.71のままで計算。

VISION 50 + 50 省エネルギー50%+再生可能エネルギー50%



【家庭部門】エネルギー消費量の推移

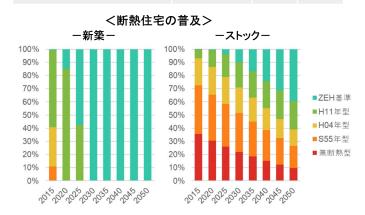
- ・2050年における家庭部門のエネルギー消費量は2018年比53%減。電力が占める割合は、空調、給湯の電化促進により、2018年51%から2050年74%と大幅に増加。
- ・用途別では暖房、給湯、照明用のエネルギー消費量が大幅に低減。

<エネルギー種別エネルギー消費量>

<用途別エネルギー消費量>

50%の再工ネ導入

(住宅の2件に1件の屋根に太陽光発電)



住宅6kW、集合住宅2.2kWをストックの半数に載せる。8800万kW 現在の4倍

参考3-1:【家庭部門】将来における対策導入量

●エネルギーサービス需要の低減…断熱や管理徹底により無 駄を削減

		2018	2050	
高断熱化	_	(下グラ	(下グラフ参照)	
エネルギー管理	2018年比	_	▲10%	

②効率改善…弛まなき技術開発と製品実装により長期にわたる 効率改善を実施

=		
		2050
冷房:エアコン	2018年比	▲30%
暖房:エアコン	"	▲25%
給湯:電気ヒートポンプ	"	▲37%
調理:ガスコンロ	"	▲ 11%
調理:炊飯器	"	▲ 9%
照明:LED	"	▲ 18 ~ 39%
家電:テレビ・レコーダー	"	▲ 28 ~ 47%
ルーター	"	▲37%
温水便座	"	▲65%
乾燥機付洗濯機	"	▲ 40%

❸電化の促進…電力のゼロエミッション化に向けた進展に合わ せて弛まなく取組を促進

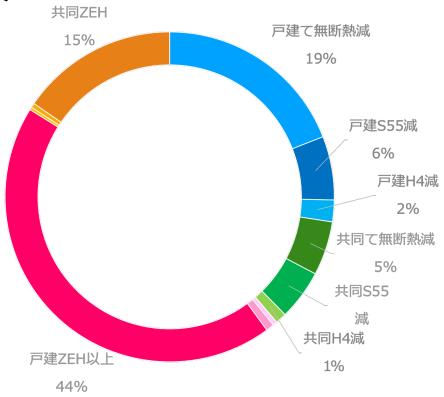
		2018	2050
空調	電力機器による暖房量の比率	31%	80%
給湯	電力機器のよる給湯量の比率	13%	78%

母新燃料…電化シフトが未達の燃料燃焼については、合成燃料 の利用により低炭素化を実現

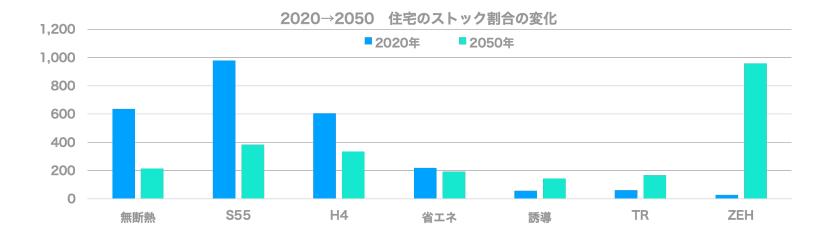
		2018	2050
合成燃料	燃料燃焼に占める合成燃料の比率	0%	43%

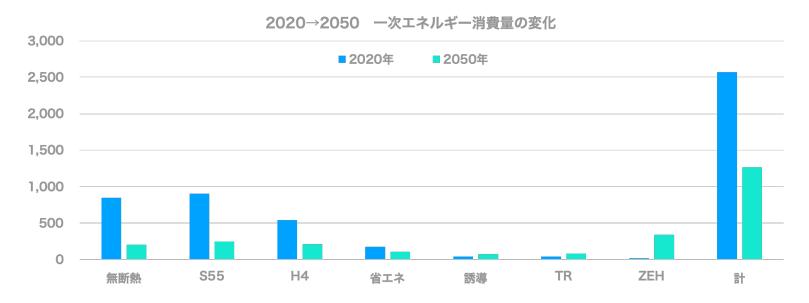
AIM

27


国立環境研究所 2021年6月30日 国立環境研究所 AIMフ ロシ ェクトチーム

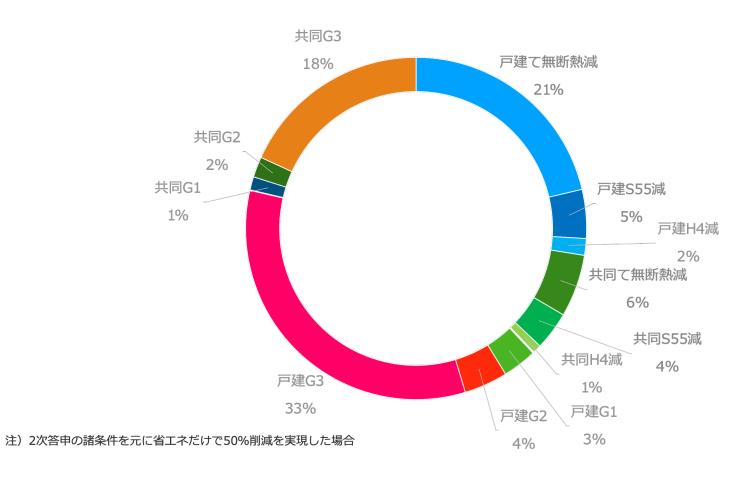
東北芸術工科大学


竹内昌義


住宅の省エネ基準適合の推進策の削減量寄与割合

NDC46%のあるべき姿

経験的にもっともコスパが良いのが、G2+6kW 太陽光発電



出典:総合資源エネルギー調査会基本政策分科会(第44回会合)資料2のストック数から2次答申条件を参考に分析

太陽光を除いて、建物だけでのNDC46%のあるべき姿

住宅の省エネ基準適合の推進策の削減量寄与割合

ZEH基準を2020年から始めていれば、年74万戸、5年遅れで2025年スタートだと89万戸、10年遅れで2030年スタートだと111万戸新築+改築(ZEHまで引き上げ)が必要です。

ー刻も早いZEH基準の義務化を。 さらに上のレベル義務化へ。 地方が進んでいるのをバックアップしましょう。

パブコメ、意見箱を作っていただきたい。

たたき台を出して、議論しましょう。

以下の数字が必要です。

- 1. 2030年の戸建て・共同住宅それぞれの基準ごとのストック数
- 2. 戸建て・共同住宅それぞれの基準ごとの消費一次エネ量
- 3. 2020、2025、2030年の戸建て・共同住宅それぞれの基準ごとの新築フロー割合

太陽光発電込みの議論が重要。