AI2018-3

AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT

NAKANIHON AIR SERVICE CO., LTD. J A 9 7 4 3

May 31, 2018

The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board and with Annex 13 to the Convention on International Civil Aviation is to prevent future accidents and incidents. It is not the purpose of the investigation to apportion blame or liability.

Kazuhiro Nakahashi Chairman Japan Transport Safety Board

Note:

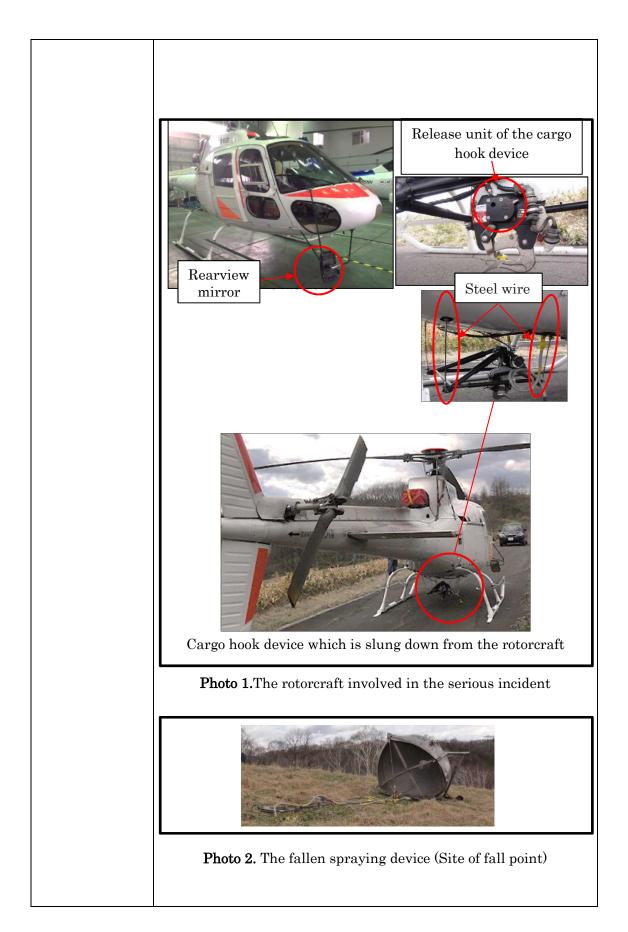
This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report.

AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT

DROPPING OF OBJECTS DURING EXTERNAL CARGO SLING OPERATION TOUBETSU, TESIKAGA TOWN, KAWAKAMI-GUN HOKKAIDO, JAPAN AT AROUND 11:58, APRIL 27, 2017

NAKANIHON AIR SERVICE CO., LTD. AEROSPATIALE AS350B1(ROTORCRAFT), JA9743

April 20, 2018 Adopted by the Japan Transport Safety Board Chairman Kazuhiro Nakahashi Member Toru Miyashita Member Toshiyuki Ishikawa Member Yuichi Marui Member Keiji Tanaka Member Miwa Nakanishi


1. PROCESS AND PROGRESS OF INVESTIGATION

1.1 Summary of	On Thursday, April 27, 2017, when an Aerospatiale AS350B1	
the Serious	registered JA9743 and operated by Nakanihon Air Service CO.,	
Incident	LTD. was flying toward a cargo sling point after spraying fertilizer	
	to a pasture at Toubetsu, Teshikaga Town, Kawakami-gun,	
	Hokkaido by a spraying device slung outside of the rotorcraft to a	
	temporary helipad, the spraying device was dropped.	
1.2 Outline of	This event fell under the category of "Case where a slung load,	
the Serious	any other load carried external to an aircraft, was released	

Incident	unintentionally" as stipulated Item (XV), Article 166-4 of
Investigation	Ordinance for Enforcement of the Civil Aeronautics Act (Ministry
	of Transport Ordinance, 1952), which was classified as an aircraft
	serious incident.
	The Japan Transport Safety Board (JTSB) designated an
	investigator-in-charge and an investigator on April 27, 2017 to
	investigate this serious incident.
	An accredited representative and an adviser of French
	Republic, as the State of Design and Manufacture of the rotorcraft
	involved in the serious incident, participated in this investigation.
	Comments were invited from parties relevant to the cause of the
	serious incident and the relevant State.

2. FACTUAL INFORMATION

2. FACTUAL	TINE	TORMATION
2.1 History	of	According to the statements of the Captain, the Trainee, the
the Flight		Engineer and the ground worker, the history up to the incident was
		summarized as below;
		At around 08:00 Japan Standard Time (JST ; UTC+9hr, unless
		otherwise stated all times are indicated in JST based on a 24-hour
		clock) on April 27, 2017, an Aerospatiale AS350B1 took off from the
		No. 2 Temporary Helipad at Toubetsu in Teshikaga Town,
		Kawakami-gun, Hokkaido (hereinafter referred to as "the
		Helipad") with The Captain sat in the left seat and the Trainee in
		the right seat. The Trainee flew the rotorcraft from the Helipad to
		repeat the spraying fertilizer with spraying device sling external,
		along with flying as a training.
		At around 11:58, as returning to the loading site in order to load
		the fertilizer to the empty spraying device, the rotorcraft
		accelerated from the speed at about 25 kt for spraying to the speed
		at about 60 kt, then turned to right at the altitude at about 50 m.
		The Trainee who was piloting noticed something dropped in the
		rearview mirror of the rotorcraft during this right turn. When he
		took a closer look at the ground of the pastures, there was a
		spraying device which had been slung from the rotorcraft.
		The Captain and the Engineer had confirmed the normal
		operation of the release unit (rock release device) of the cargo hook
		device by actuating the mechanical release handle (hereinafter
		referred to as "the Handle") equipped on the collective pitch lever
		prior to the first flight of this day to spray the fertilizers.

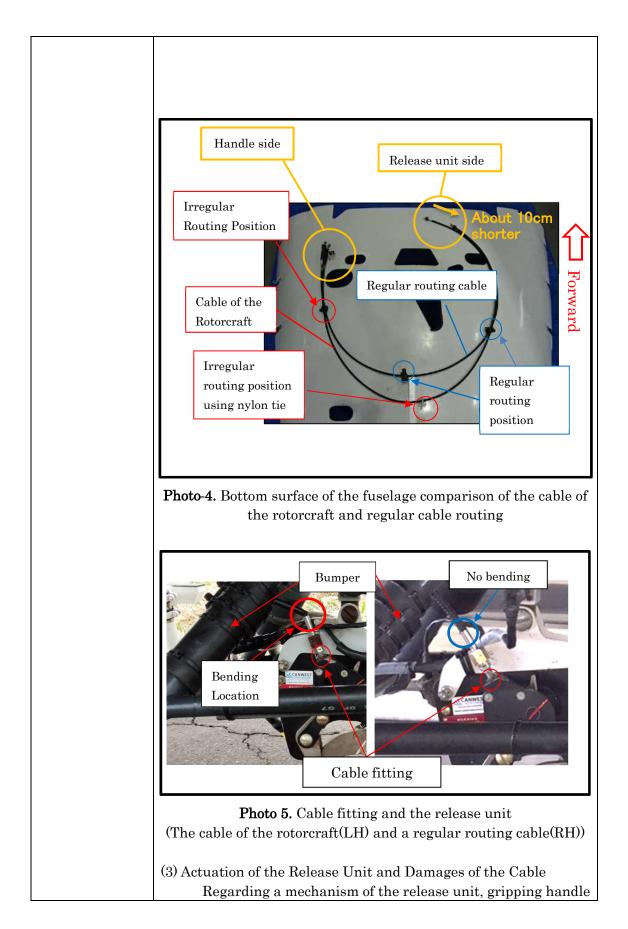
	The Helinad
	Based on the digital map
	published by Geospatial Information Authority of
	Japan
	Kyu-maru-maru (Fertilizer) Loading
	Sougen Site Fall Point (900 Pasture)
	Figure 1 Estimated flight moute man
	Figure 1. Estimated flight route map
	The serious incident occurred within a grazed pasture at Kyu-
	maru-maru Sougen (900 Pasture) (N43°25'32", E144°27'44") of a
	ranch managed by the town at Toubetsu in Teshikaga Town,
	Kawakami-gun, Hokkaido, Japan, at around 11:58 on April 27,
2.2 Injuries to	2017. None
2.2 Injuries to persons	None
2.3 Damage to	None
Aircraft	
2.4 Personnel	(1) Captain Male, Age 50
information	Commercial pilot certificate (rotorcraft) February 19, 1990
	Specific pilot competence
	Expiry of practicable period for flight; December 19, 2018 Type rating for a single turbine engine (land)
	February 19, 1990
	Class 1 aviation medical certificate
	Validity; February 12, 2018
	Total flight time6,619 hours 49 minutes
	Total flight time6,619 hours 49 minutesFlight time in the last 30 days49 hours 45 minutes
	Total flight time6,619 hours 49 minutesFlight time in the last 30 days49 hours 45 minutesTotal flight time on the type of aircraft 1,946 hours 05 minutes
	Total flight time6,619 hours 49 minutesFlight time in the last 30 days49 hours 45 minutes

		· · · · · · · · · · · · · · · · · · ·	
	Commercial pilot certificate (rotorcraft) November 4, 1997	
	Specific pilot competence Expiry of practicable period for flight;	March 18 2018	
	Type rating for a single turbine engin	March 18, 2018	
	Type facing for a single furbline engine	November 4, 1997	
	Class 1 aviation medical certificate	November 4, 1997	
		alidity; March 14, 2018	
		2,812 hours 22 minutes	
	Flight time in the last 30 days	21 hours 56 minutes	
	Total flight time on the type of aircraf		
	Flight time in the last 30 days	21 hours 56 minutes	
	i light time in the last so days	21 110415 50 11114005	
2.5 Aircraft	Rotorcraft Type;	Aerospatiale AS350B1	
information	Serial Number;	2077	
	Date of Manufacture	February 10, 1988	
	Airworthiness certificate	No. Tou-29-025	
	Validity	April 23, 2018	
	Total flight time	4,741 hours 03 minutes	
2.6	According to the statements of the Cap	tain, at the time of the	
Meteorological	serious incident, the weather was cloudy,	the visibility was good	
information	and the wind direction and velocity wa	as southwest wind at	
	approximately 5 kt.		
2.7 Additional	(1) Structure of the control cable		
information	The structure of the control cable (he	reinafter referred to as	
	"the cable") are consisting of inner cable and outer cable, and		
	the outer cable was composed with line	, lower coil and sheath	
	(exterior). In addition, the cable of the n	cotorcraft is covered by	
	-	contractility tube (hereinafter referred to as "the protective	
	tube") due to the purpose of protecting	-	
	inner cable transmits a tension generat		
	handle equipped in collective pitch lever		
	the outer cable prevents the tension of t		
	by keeping a fixed cable length from the	release unit to handle,	
	even though the cargo swing shook.		
		Protective Tube	
	Sheath		
	Outer Cable - Lower coil		
	Liner	Inner Cable	

Figure 2. The cable structure of the rotorcraft

(2) The Cable Routing

The cargo swing is hung from the bottom of the fuselage (See Photo 1) by four steel wires, utilizing the rotorcraft structure. The Handle installed in the collective pitch lever is connecting to the Cable in order to actuate mechanically the release unit of the cargo hook device. The cable which is placed based on the maintenance manual (hereinafter referred to as " the regular cable"), were fastened to secure the route from the Handle to the release unit with two clamps at two locations to set as short as possible with enough margin provided at the cable length at the release unit side.


On the other hand, the cable of the rotorcraft was fastened at three locations, one of these was at the regular routing position but two of the rest were fastened at the irregular routing position. One location of these was at the far rear than the regular routing position (Photo 4) and in addition these were a nylon tie used instead of a clamp (Photo 3). The use of a nylon tie instead of clamp generates bigger friction, and when the cargo swing shakes due to flight or others, it was confirmed that the Cable could not follow the movement, smoothly.

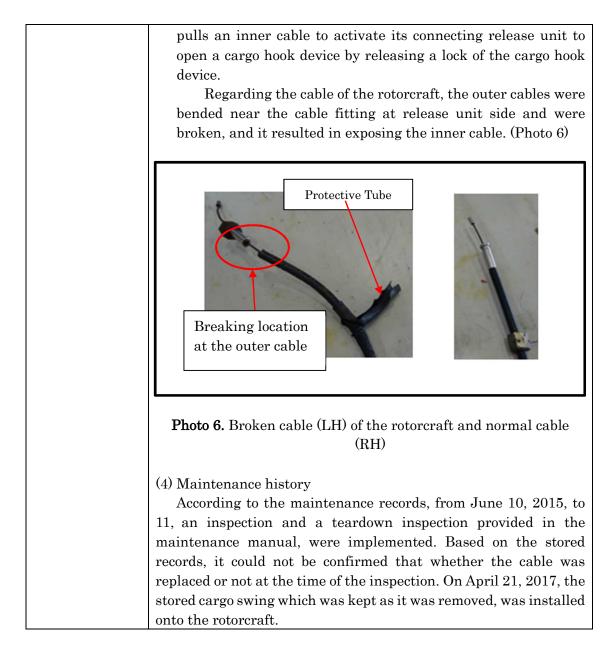


Photo 3. Clamp (left) and nylon tie (right)

When comparing the cable of the rotorcraft with the regular routing cable, the Cable of the rotorcraft was short by about 10 cm (Photo 4) at the connecting side of the release unit. Because of this, it was confirmed that the cable was bended (Photo 5) due to application of the strong bending force to near the cable fitting at the release unit side.

Furthermore, according to the maintenance records of the Company and the interview of the relevant parties, it was not able to confirm the history of why it changed from the regular cable routing.

3. ANALYSIS

J. AIVALIDID	
3.1 Involvement	None
of weather	
3.2 Involvement	None
Of pilot	
3.3 Involvement	Yes
of equipment	
3.4 Analysis of	(1) Damages of the cable
known items	The Cable of the rotorcraft did not have a sufficient length at
	the release unit side in comparison with a regular cable routing.
	Consequently, it is highly probable that because the cargo swing
	was shaking during the flight up to then, severe forces was acting

	-
	on the outer cable near the cable fitting and caused bending,
	deterioration and break of the cable at the spot during the turn
	when the serious incident occurred.
	When inspecting the cargo swing, it is highly probable that
	because the outer cable was covered by the protective tube, the
	deterioration of the outer cable could not be found.
	(2) Drop of the Spraying System
	The inner cable of the rotorcraft had been exposed because
	the outer cable was broken. Because of this, it is highly probable
	that when the cargo swing was shaken due to the right turn
	following an acceleration of the rotorcraft, because the outer
	cable which was constricted the movement by the nylon tie,
	broke, this caused the same tension as the gripping the handle
	to the inner cable, therefore, the release unit was activated, was
	opened the cargo hook system and let the slung spraying device
	dropped.
	(3) Configuration Management
	The Cable of the rotorcraft was differed from the normal
	routing configuration, the nylon tie instead of the clamp and the
	nylon tie was used to place at the irregular routing position,
	however, the reason could not be clarified. Maintaining the regular
	configuration is important for the safe operation, and it is
	necessary to reconfirm the method to maintain the appropriate
	configuration management like how to maintain the configuration
	or how to keep the records of the configuration changes.
	(4) Maintenance Works based on the Maintenance Manual
	On the premise of the configuration management described in
	(3), if the work was appropriately implemented as the procedure
	provided in the maintenance manual, it is probable that it could
	prevent to have unnecessary force applied on the cable.
L	

4. PROBABLE CAUSES

It is highly probable that the serious incident occurred because when the cargo swing was shaken due to the right turn following the acceleration of the rotorcraft to cause the outer cable of the cargo swing broke, the tension was applied to the inner cable, the release unit was activated to open the hook and the spraying device slung was dropped.

Regarding why the outer cable of the cargo swing broke and the tension was applied to the inner cable, it is highly probable that the cable routing configuration was differed from the regular routing configuration,

5. SAFETY ACTION

The company took the following safety action upon the occurrence of the serious incident;

The cables which were equipped for all rotorcraft with the same type cargo hook devices in the company were replaced. Furthermore, an exchange timing for a cable shall be set and the used cable shall be discarded after the installation for five years.
Regarding the following remarks, special training to the staff of working at the maintenance section and the flight operation section mainly was implemented.

① Concerning the routing and the inspections of the mechanical control cable;

2 Concerning the setting of the time management of the control cable;

3 Concerning the operation checks prior to its operation of cargo transportation of external cargo sling operation as a whole;

(3) Have all personnel know the importance of the configuration management and when installing optional equipment, it must confirm to be a normal configuration including the accessories.