AA2019-5

AIRCRAFT ACCIDENT INVESTIGATION REPORT

KOREAN AIR LINES CO., LTD. H L 7 7 2 5

June 27, 2019

The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board and with Annex 13 to the Convention on International Civil Aviation is to determine the causes of an accident and damage incidental to such an accident, thereby preventing future accidents and reducing damage. It is not the purpose of the investigation to apportion blame or liability.

Nobuo Takeda Chairman Japan Transport Safety Board

Note:

This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report.

AIRCRAFT ACCIDENT INVESTIGATION REPORT

DAMAGE ON LOWER AFT FUSELAGE DUE TO TAIL STRIKE DURING GO-AROUND KOREAN AIR LINES CO., LTD. BOEING 737-900, HL7725 ON RUNWAY 06L AT KANSAI INTERNATIONAL AIRPORT AT AROUND 21:33 JST, APRIL 09, 2018

May 24, 2019

Chairman Nobuo Takeda Member Toru Miyashita Member Yoshiko Kakishima Member Yuichi Marui Member Yoshikazu Miyazawa Member Miwa Nakanishi	Adopted by the Japan	Transport Safety Board
MemberToru MiyashitaMemberYoshiko KakishimaMemberYuichi MaruiMemberYoshikazu MiyazawaMemberMiwa Nakanishi	Chairman	Nobuo Takeda
Member Yoshiko Kakishima Member Yuichi Marui Member Yoshikazu Miyazawa Member Miwa Nakanishi	Member	Toru Miyashita
Member Yuichi Marui Member Yoshikazu Miyazawa Member Miwa Nakanishi	Member	Yoshiko Kakishima
Member Yoshikazu Miyazawa Member Miwa Nakanishi	Member	Yuichi Marui
Member Miwa Nakanishi	Member	Yoshikazu Miyazawa
	Member	Miwa Nakanishi

1 PROCESS AND PROGRESS OF THE INVESTIGATION

1.1 Summary of	On Monday, April 9, 2018, a Boeing 737-900, registered HL7725,	
the Accident	operated by Korean Air Lines Co., Ltd., suffered damage on the lower aft	
	fuselage when making a go-around after a bounced landing on runway	
	06L at Kansai International Airport at around 21:33 JST.	
	There were 99 people in total on board, consisting of the PIC, seven	
	other crew members, and 91 passengers. No one was injured.	
1.2 Outline of	On April 10, 2018, the Japan Transport Safety Board (JTSB)	
the Accident	designated an investigator-in-charge and two investigators to investigate	
Investigation	the accident.	
	An accredited representative and an adviser of the Republic of	
	Korea, as the State of the Registry and the Operator, and an accredited	
	representative of the United State of America, as the State of the Design	
	and Manufacture of the aircraft involved in the accident, participated in	
	the investigation.	
	Comments were invited from the parties relevant to the cause of the	
	accident and the Relevant States.	

2 FACTUAL INFORMATION

2.1 History of	According to the statements of the Captain and the first officer		
the Flight	(hereinafter referred to as "the FO"), the records of the flight data		
	recorder (FDR) and the cockpit voice recorder (CVR), and the records of		
	ATC communications, the flight history was summarized below.		
	At 20:24 Japan Standard Time (JST: UTC+9 hours, unless		
	otherwise stated in this report all times are indicated in JST on a		
	24-hour clock), on April 9, 2018, Boeing 737-900, registered HL7725		
	operated by Korean Air Lines Co., Ltd. (hereinafter referred to as		
	"the Company"), as the Company's scheduled Flight 733, took off		
	from Jeju International Airport (the Republic of Korea) bound for		
	Kansai International Airport (hereinafter referred to as "the		
	Airport"). The Captain sat in the left seat as PF ^{*1} and the FO sat in		
	the right seat as PM ^{*1} .		
	The landing briefing commenced at around 20:59 prior to the		
	descent did not include information regarding a tailwind at the time		
	of the landing.		
	The aircraft was instructed to fly directly to BERRY (see Figure		
	1) via NALTO when descending the route prescribed in the standard		
	instrument 💦 🦌 Kansai International Airport		
	arrival. The		
	aircraft was		
	descending with		
	receiving a BERTH		
	tailwind. The wind		
	at an altitude of Geospatial Information Authority of Japan		
	4,000 ft where the Figure 1 ; Estimated Flight Route before Go-around		
	Aircraft started		
	the final approach on the ILS approach for runway 06L of the Airport		
	was about 20 kt in tailwind. The wind information (see $2.5(1)$)		
	provided by an air traffic controller (hereinafter referred to as "the		
	Controller") of the Airport after the aircraft had passed over BERRY		
	was 0.50° in wind direction and 50 kt in wind velocity. Both the auto-		
	phot and the auto-throttle of the alternat were disengaged at around		
	a radio antitude of 1,200 ft. in addition, the aircraft continued a		
	tailwind at an altitude of 1 000 ft in the Contain's moment.		
	Cantain, who was assuming that a landing would be made in the		
	tailwind nlanned to nut the thrust lavare to their idle nosition earlie		
	than usual with performing a flare (nose up maneuver to reduce the		
	inan usual with performing a nare (nose up maneuver to reduce the		

^{*1} PF (Pilot Flying) and PM (Pilot Monitoring) are terms used to identify pilots with their roles in aircraft operated by two persons. The PF is mainly responsible for maneuvering the aircraft. The PM mainly monitors the flight status of the aircraft, cross checks operations of the PF, and undertakes other non-operational works.

rate of descent) in order to prevent that a touchdown would be long down on the runway. The Captain memorized that the wind information provided by the Controller along with issuing the landing clearance had been 3 kt in crosswind (in fact, wind direction was 030 ° and wind velocity was 3 kt) and also stated that the wind at the vicinity of the runway threshold had been almost calm.

The FO was feeling that the approach was stabilized, except that the engine thrust of the aircraft had been set lower than usual. The FO thought the stabilized approach would continue afterward because the captain had set the normal engine thrust after the autocall of a radio altitude of 100 ft.

At around 21:32:54, the Captain moved the thrust levers to their idle position along with initiating the flare at 2 ° pitch angle at a radio altitude of about 30 ft. Although the captain tried to continue raising the nose and to reduce the rate of descent, the timing of such maneuvers was slightly delayed from the captain's assumption. Reducing the rate of descent was infeasible because the thrust levers had already been set to their idle position. The Captain tried to reduce the rate of descent of the aircraft by pulling the control column further.

The FO felt that the amount of the flare the Captain was operating was somewhat small. The FO, who felt that the intervals of the auto-call made at every 10 ft at a radio altitude of 30 ft or below were short and the rate of descent was large, pulled the control column to reduce the rate of descent without making any call-out. Having noticed the operation of the FO, the captain kept the control column so as to follow the FO's operation.

At around 21:32:57, the right main landing gear of the aircraft touched down at pitch angle of about 3.5 ° (Fig. 2 <1>), and all spoilers began to deploy when the auto speed brake was activated. Subsequently, after the left main landing gear had touched down, the aircraft bounced. The maximum vertical acceleration recorded in the FDR during this period was 1.87 G.

The captain, who was unable to predict the degree of the bounce and assumed that the impact accompanied by the touchdown after the bounce would be hard, executed a go-around maneuver. The pitch angle of the aircraft immediately before executing the go-around was about 5 °. The aircraft started climbing positively at about 10 ° pitch angle after its both main landing gears touched down again (Fig.2<3>) from its right main landing gear at about 7 ° pitch angle (Fig.2<2>) approximately one second after it had executed the go-around (approximately two seconds after its right main landing gear made a first touchdown). The Captain

^{*2} "Tail Skid" means the equipment to prevent or reduce damage on an aircraft caused by a lower aft fuselage striking a runway as a result of an excessive nose up during a take-off and a landing.

		Type rating for Be	oeing 737		June 27, 20	017
		Class 1 aviation medica	al certificate			
	Validity				May 31, 20	018
	Total flight time			5,893	hours 05 minu	ites
	Flight time in the last 30 days			30	hours 07 minu	ites
		Total flight time on the type of the aircraft			3 hours 00 min	utes
		Flight time in the last 30 days			hours 07 minu	ites
	(2	2) FO Male, Age 33				
		Commercial pilot certif	ficate (Airplane	2)	June 22, 2	2012
		Type rating for Be	oeing 737]	November 01, 2	2016
		Instrument rating			September 11,	2012
		Class 1 aviation medica	al certificate			
		Validity			January 31, 2	2019
		Total flight time		1,79	6 hours 01 min	utes
		Flight time in the	e last 30 days	4	6 hours 57 min	nutes
	Total flight time on the type of the aircraft			craft 79	92 hours 12 mir	nutes
		Flight time in the	e last 30 days	4	6 hours 57 min	nutes
2.4 Aircraft	(1) Aircraft				
Information	Type: Bo			Boeing 737	-900	
		Serial number:			299	999
		Date of manufacture:		May 11, 2	004	
		Certificate of airworthiness:			AS05	5106
		Validity			Not speci	fied
		Category of airworthin	ess:	Air	plane Transpor	t (T)
	Total flight time			30,74	30,740 hours 29 minutes	
	(2) At the time of the accident, the weight of the Aircraft is was					
	estimated to have been 128,926 lbs, and the position of the center of					
	gravity is estimated to have been 19.6% MAC ^{*3} , accordingly, both of					
	which stayed within the allowable range.					
2.5 Meteorological	Aeronautical weather observations at the relevant time of the					
Information	accident at the Airport (wind direction and wind velocity) were as follows.					
	Note: The prevailing visibility was 10 km or more, the amount of					
	cloud was 1/8-2/8 and the height of cloud base was 3,000 ft at each					
	observations time as stated in the table below.					
	Table1; Wind direction and wind velocity					
		at the r	elevant timeof	the accident		
		Observation time	20:30	21:00	21:30	
		Wind direction(°)	140	050	010	
		Wind velocity(kt)	03	03	03	

^{*3} "MAC" stands for Mean Aerodynamic Chord, meaning a chord that represents the aerodynamic characteristics of a wing. It is the representative chord length if the chord is not constant as in the case of a sweptback wing. 19.6% MAC indicates a position located at a distance of 19.6% from the leading edge of the mean aerodynamic chord.

[
	Besides, wind direction and wind velocity shown in the above table			
	were observed by a 2-minute average anemometer installed about 450 m			
	beyond the threshold of runway 06L and about 150 m north of the runway			
	centerline. The data observed at the time of the accident did not show any			
	significant change in wir	nd direction and wind ve	locity. In addition, the	
	Controller provided the a	aircraft with the wind in	formation obtained from	
	this anemometer.			
	(2) According to the Sig	nificant Weather Observ	vation Chart (RJBB) at	
	21:00 on the day of the a	ccident and was issued a	at 21:11 on the same day,	
	wind direction and wind	velocity in the sky over	the Airport were as	
	follows.			
	Table2 ; Wind o	direction and wind veloci	ty in the sky over	
	Ka	nsai International Airpo	rt	
	Altitude(ft)	Wind direction(°)	Wind velocity(kt)	
	18,000	290	64	
	10,000	290	40	
	5,000	250	21	
	2,500	270	09	
2.6 Additional	(1) Damage on the aircra	ıft		
Information	Scratch marks app	roximately 210 cm in len	gth and approximately	
	36 cm in the maximum v	vidth were found on the	skin of the lower aft	
	fuselage including cracks	8.		
	In addition, the tai	l skid was broken.		
	Accident Aircraft			
	Appearance of Tail Skid			
	Scratch Mark	Deformed by Compression Lo	ad Scratch Marks	
	Damages on Tail Skid (Lower Aft Fuselage)			
	Figure 3 ; Damages on the Aircraft			
	1			

keep the pitch attitude constant.
• Set the thrust levers to idle position almost simultaneously with
touching down of the main gears.
(4) Bounced Landing
Advisory Circular (AC) 120-114: Pilot Training and
Checking/3.10.10 Recovery From a Bounced Landing/3.10.10.2 Awareness
Criteria published by the FAA describes that an excessive descent rate, a
late flare initiation, an incorrect flare technique and others could be
caused of bounced landing.
(5) Bounced Landing Recovery
The Pilot Operating Manual (POM) and the training guide issued by
the Company contain following descriptions on bounced landing recovery.
<1)> POM (8. NON-NORMAL OPERATIONS, MANEUVERS,
BOUNCED LANDING RECOVERY) (Excerpts)
• If an aircraft bounces, hold or re-establish a normal landing
attitude and add thrust necessary to control the rate of descent.
There is no need to add thrust in case of a shallow bounce or a skip.
• Initiate a normal go-around procedure in case of a high and/or
hard bounce. Do not retract the landing gears until a positive climb
rate is established in preparation for a possible second touchdown
during the go-around.
<2> Training Guide (Landing Technique)
<a> In case of a light bounce:
Hold or re-establish a normal landing attitude (check PFD* ⁴
for attitude degrees).
• Never increase a pitch attitude to avoid a possible tail-
strike.
• Never increase a pitch attitude particularly after a firm
touchdown followed by a high pitch rate.
Note: Spoiler extension may cause a pitch up effect.
• Continue landing keeping thrust at idle.
 In case of a high bounce:
Never attempt to land. Following go-around procedure can be
applied.
• Never increase a pitch attitude as it could cause a tail-
strike.
• Initiate a go-around by operating TOGA switch and
advance thrust levers to the go-around position.
• Follow a normal go-around procedure.
• Prepare for a possible second touchdown during the
go-around.

^{*4} PFD (Primary Flight Display) means an integrated instrument to indicate the necessary flight information like an attitude, an altitude, an airspeed and others.

• Never attempt to avoid a second touchdown. The second
touchdown does not damage the aircraft as far as the attitude
is maintained.
Note: PM should check a pitch angle in PFD and call out
"PITCH" if the pitch angle is extraordinarily high so that a
tail strike can be avoided.
(6) Go-Around
The go-around procedure until retracting the landing gears is
described in 5. NORMAL OPERATIONS/ APPROACH AND LANDING in
the POM as outlined below.
\bullet PF pushes TOGA switch on the thrust levers simultaneously with
calling out " GO-AROUND" and "TOGA" and manually advances the
thrust levers to their go-around position, and calls out "SET GO-
AROUND THRUST" "FLAP 15".
\bullet PF rotates the nose smoothly toward 15 $^{\circ}$ nose up attitude.
• PM monitors PF's operations and set the thrust and the
flaps in accordance with instructions from PF.
• PF and PM retract the landing gears after confirming that
altimeters show positive climb rate.
(7) Tail Strike
<1> Factors
The FCTM lists following factors of tail strike upon landing.
• Unstabilized approach
• Holding off in the flare
• Trimming during the flare
• Mishandling in the crosswind
• Over-rotation during the go-around
<2> Pitch Angle
POM 4. LIMITATIONS and the FCTM include following
descriptions on pitch angles at which the lower aft fuselage contacts
the ground.
• Take-off (Main Gear Struts Fully Extended) : 10 °
• Landing (Main Gear Struts Fully Compressed) : 8.2 °
(8) Provision on Call-Out
<1> 2.2.2 General Operational Policy, OPERATIONAL POLICY in
the FOM of the Company stipulates that PM must make a call-out if
PM recognizes any deviation or possibility of the deviation from the
SOP or the intended flight path. The provision also prescribes that PM
must take appropriate corrective actions including taking over the
aircraft control for the safety of the flight unless PF takes necessary
actions to respond to call-outs.
<2> 5. NORMAL OPERATIONS/APPROACH AND LANDING in the
POM includes descriptions regarding a call-out during approach as

stated below. (Excerpts)	
<u>CALLOUTS DURING THE A</u>	PM
Verify the deviation, and if	Any excessive deviations or
appropriate correct deviation	uncorrected minor deviations
with calling "CORRECTING" o	r from desired flight path.
execute missed approach with	airspeed or descent rate
calling "GO-AROUND"	occurs. PM must callout:
	(Excernt)
	<i>"FLARE"</i> (if a flare is not
	initiated at the recommended
	flare height)
	(Excerpt)
	If the approach is
	unstabilized or for any other
	reason cannot safely be
	continued:
	Call "GO-AROUND"
(9) Training for the Captain and	the FO
According to the training re	cords of the Captain and the FO, the most
recent training regarding the Bo	unced Landing Recovery is as follows.
<1> Captain	
The Captain received the s	imulator training regarding the Bounced
Landing Recovery prior to prom	otion to a captain for the type of Boeing
737 in May, 2017.	
Afterward, the Captain red	eived the ground school training
regarding the Bounced Landing	Recovery in July, 2017 before taking the
operation experience training, a	nd also received the briefing by assigned
instructors during the operation	experience training.
<2> FO	
The FO received the traini	ng regarding the Bounced Landing
Recovery in the periodic training	g (both ground school training and
simulator training) of the first h	alf of 2018.

3 ANALYSIS

3.1 Involvement of	No
Weather	
3.2 Involvement of	Yes
Pilots	
3.3Involvement of	No
Equipment	

3.4 Analysis of	(1) History until Bounce
Findings	The Captain started a landing briefing at around 20:59. It is probable
	that the meteorological information which the Captain referred to at that
	time was the observation data issued at 20:30. It is probable that the
	Captain did not perform the briefing regarding a tailwind at the time of
	landing in view of the wind direction of 140° issued at 20:30.
	However, it is highly probable that the Captain assumed that the
	landing would be made under tailwind conditions because the aircraft was
	descending in the tailwind and was receiving the tailwind continuously
	during the final approach for the ILS approach.
	Meanwhile, the wind direction which the Controller provided with the
	aircraft was 030°. It is probable that the Captain was able to predict that
	wind conditions were changing as the aircraft was descending because the
	Captain recognized the tailwind of about 5 kt at an altitude of about 1,000
	ft and almost calm wind in the vicinity of the runway threshold.
	However, it is probable that initiation of the flare along with reduction
	of the engine thrust the Captain performed, assuming that the landing
	would be made in tailwind conditions, followed by insufficient raise of nose
	up made the descent rate higher than the Captain's assumption. It is
	probable that the Captain was required to control the aircraft so as to cope
	It is probable at that moment, that the aircraft touched down when
	its attitude was changing to nose un direction because the FO, who falt that
	the descent rate was high pulled the control column. It is probable that the
	aircraft bounced because it touched down when its descent rate was high
	and its attitude was being changed to the nose up direction.
	(2) Tail Strike
	It is highly probable that the Captain executed the go-around because
	the Captain was unable to predict the degree of bounce.
	Both the POM and the FCTM prescribe that the lower aft fuselage
	contacts the ground at a pitch angle of 8.2 $^{\rm o}$ or greater at the moment of the
	touchdown. The FDR records indicate that the pitch angle varied from
	approximately 7° to approximately 10° during the time from a second
	touchdown of the right main gear after initiating the go-around to the
	lifting off. During this period, it is highly probable that the lower aft
	fuselage of the Aircraft was damaged with contacting the runway because
	its pitch angle became too high exceeding 8.2 °.
	The Captain and the FO stated that the FO, who had noticed the high
	pitch angle after initiating the go-around, tried to restrict the movement of
	the control column uttering something to the Captain however, it was not
	possible to verify the words the FO had uttered in the OVK records.
	hegalung the price angle became too mgn, it is somewhat likely that
	secande the Captain, who thought the impact after the bounce would

become hard and tried to avoid the second touchdown, performed large nose
up maneuver.
The training guide of the Company prescribes that a second
touchdown should not be attempted to avoid if a go-around is executed after
a high bounce, aircraft is not damaged as far as it maintains its attitude
even if the second touchdown has occurred, and a pitch angle is to be
verified with the PFD during the recovery.
It is somewhat likely that the Captain was unable to apply the
training guide information and simulator training experience to actual
situation even if he had received Bounced Landing Recovery training
during the simulator training to promote to a captain.
Moreover, it is somewhat likely that the fact that the go-around was
initiated when the attitude of the Aircraft was changing by the nose up
maneuver immediately before the touchdown and the spoilers were
deploying contributed to the excessive pitch angle.
the start from the start from the start the start
<1> <2> <3>
Note: Each number corresponds to the each number of the figure 2.
Figure 6 ; Image of Tail Strike
(3) Response of PM
At the time of occurrence of this accident, it is probable that the FO,
who was the PM, judged the descent rate after initiating the flare was large
and subsequently pulled the control column immediately before the
touchdown without a call-out to avoid the hard landing.
The FOM of the Company prescribes that PM calls out the situations
to PF in case that aircraft has deviated or will possibly deviate from a flight
path, and in case of no response from PF, PM takes appropriate actions
including taking over.
It is probable that the FO should have called out "FLARE" or "GO-
AROUND" at first at the very moment the FO noticed that the descent rate
after the Captain had initiated the flare was large as prescribed in the
FOM and the POM considering it is somewhat likely that ambiguity over
either PF or PM is operating independently could lead to a possible threat
to the safety of the flight if PM intervened an operation without a call-out
as in the case like this accident.

4 PROBABLE CAUSES

In this accident, it is highly probable that the lower aft fuselage of the aircraft was damaged with contacting the runway because its pitch angle became too high during the go-around following the bounce at the time of the landing.

Regarding the pitch angle became too high, it is somewhat likely that because the Captain,

who thought the impact after the bounce would become hard and tried to avoid the second touchdown, performed large nose up maneuver.

5 SAFETY ACTIONS

The Company took the following actions after this accident to prevent occurrence of similar cases.

- (1) Flight Crew Involved
 - Simulator training regarding "Normal Take-off and Landing" and "Bounced Landing Recovery".
 - Crew Resource Management (CRM) review regarding Crew Coordination.
 - Unscheduled Line Check.
- (2) All Flight Crew
 - Knowledge Verification regarding "Tail Strike" and "Bounced Landing Recovery".
 - Issued Notice about "Basic Duty Compliance" and " Intervention for
 - PF's control by PM".
- (3) Boeing 737 Flight Crew
 - Revision of Simulator Profile prior to Operating Experience (OE).
 - Additional Simulator Training for the captains whose total flight time is between 100 and 150 hours.
 - Issued Notice about the Go-around from immediately before
 - landing.