

Current Status of the Planning of Municipal Wastewater Treatment System

in Myanmar

AUNG KHAING MIN

Assistant Director, Water and Sanitation Division Building Department, Ministry of Construction

28th JULY 2016 (Nagoya, Japan)

Outline

- Background
- Sanitation Coverage
- Current status of Yangon and Naypyitaw City
- Guideline for Wastewater Effluent Quality
- Challenges
- Concluding remarks

Background Information			
Situated in	-South East Asia		
Area	-261,228 square miles		
	-677,000 sq km		
Climate	-Tropical monsoon		
	- (3 seasons)		
Annual Rainfall	-2500 mm(Delta Region)		
	-1000mm(Dry Zone)		
	-5000mm(Coastal Region)		
Average Temperature	-22~40 degrees Celcius		
Population	-51.4 millions		
Density	-80 per sq km		
Administrative	-14 states/regions		

Related Organizations to Municipal Wastewater Treatment (Various agencies and department engaged in wastewater sector)

Agency/Department	Ministry/City/ Others	Type of Sanitation Facility
Yangon City Development Committee	Yangon	Sewerage, septic system, Pit latrine with slab Activated sludge wastewater treatment plant
Naypyitaw City Development Committee	Naypyitaw	Sewerage, septic system, Pit latrine with slab Activated sludge wastewater treatment plant
Mandalay City Development Committee	Mandalay	Septic tank system, Pit latrine with slab
Water and Sanitation Division Building Department	Construction	Septic tank system
Department of Development Affairs	Border Affairs	Septic tank system , Pit latrine with slab
Environmental Sanitation Division Department of Health	Health and Sports	Systematic latrine Construction

SEWAGE SYSTEM OF YANGON

Status of Sewage Treatment in Yangon City

Treatment facility	Percentage of population (%)
Conventional Sewerage System	7.3 %
Septic Tank System	18.4%
Pour Flush System	28.0%
Fly Proof Latrines	18.0%
Unsanitary Latrine	28.0%
No Latrine	0.3%

Source – YCDC

Situation of Sewerage and Wastewater Treatment Plant in Yangon

Sewerage System

Disposal of Sewage into the river without any treatment before proposed Sewage Treatment Plant

Activated Sludge Wastewater Treatment Plant

Year of Establishment	- 12th April 2003		
Year of Completion	- 17 th January 2005		
Volume of Daily Treatable sewage	- 3.25 MGD		
Developer	- Myanmar		
Engineers of Yangon City Development Committee			
Cost of Project -	- USD0.96 Millions		
+ (Myanmar Kyat -2065.7 Millions)			
Areas of Plant	- 5.56 Acres		
Design Criteria:			
Design population	- 300,000		
Daily wastewater discharge	- 14775 m3/day		
BOD influent	- 600mg / 1		
BOD effluent	- 20-40 mg / 1		
Suspended solid influent	- 700 mg / 1		
Suspended solid effluent	- 40 mg / 1		

Long Term Plan for Yangon City

SEWAGE SYSTEM OF NAYPYITAW

EXISTING SEWERAGE SYSTEM IN NAY PYI TAW

• 20% of new constructed area of Nay Pyi Taw using sewage treatment plant (Aerobic System)

• 80% using Septic Tank (Anaerobic System) and Pit Latrine with slab

• Sewage collection is combined system

• Sewer pipes are directly connected with waste water treatment plant

Using Sewage System w.r.t Quarter			
Sr	Quarter	Population	Sewage System
1	Mingalr Thaikdi	5972	Central System
2	Bawaga Thaikdi	5252	Separate System
3	Pyinnyar Thaikdi	8239	Separate System
4	Zayya Thaikdi	3700	Separate System
5	Dana Thaikdi	7994	Separate System
6	Bala Thaikdi	7632	Separate System
7	Nyarna Thaikdi	8537	Separate System
8	Thuka Thaikdi	5548	Separate System
9	Wanna Thaikdi	8915	Separate System
	Total	61789	

SEWAGE SYSTEM OF NAYPYITAW MINGALARTHAIKDI QUARTER

Source – NCDC

Activated Sludge Process Layout Plan of Sewage Treatment System waste water from housing complex Collection Excess Sludge Excess Sludge sumps Grit chamber B-1 **Chlorination Tank** Equalization tank Aeration tank sludge drying beds Sedimentation tank Dry sludge cakes **Design Criteria** - 10000 Population Sewage Volume - 1600 m3/day Outlet BOD - 20mg/L Daily BOD Loading- 400 Kg BOD /day

Influent Quality

Biochemical Oxygen Demand	250mg/lit
(BOD,20°C)	
Suspended Solids (SS)	220mg/lit
Total Organic Carbon (TOC)	160mg/lit
Chemical Oxygen Demand (COD)	500mg/lit

Effluent Quality

Biochemical Oxygen Demand	20mg/lit
(BOD,20°C)	
Suspended Solids (SS)	30mg/lit
Chemical Oxygen Demand (COD)	60mg/lit

SEWAGE TREATMENT PLANT IN NAYPYITAW

GRIT CHAMBER (INLET OF SEWAGE TREATMENT PLANT)

AERATION TANK OF SEWAGE TREATMENT PLANT

EQUALIZATION TANK FOR SEWAGE COLLECTION

AERATION TANK

TREATED WATER COLLECTION OR RETENTION POND

18

Decentralized Wastewater Treatment System in Myanmar Septic Tank and Soak Pit

19

20

Comparison of Septic Tank System

	Conventional Septic Tank	Jokasou	Sewage Treatment Plant
For	Black Water	Black & Gray	Water
Process	Anaerobic + (Under Seepage)	Anaerob + Aerobic	ic 2
Treated water (BOD)	100-150 mg/l	<20 mg/l	20-50 mg/l
Construction Period	Short	Short	Middle
Electricity	No Need	Need	
Administrator	Homeowner (Individuality)	Individual or Municipality	Municipality
Suitable area	Area of scattered population	Area of scattered population	Urban area

Source-http://www.slideshare.net/dsbigornia/johkasou-

COMMITTEE FOR QUALITY CONTROL OF HIGH-RISE BUILDING CONSTRUCTION PROJECTS GUIDELINE III GEOTECHNICAL INVESTIGATIONS RELATED TO SANITARY WORKS

- 1. To provide bearing capacity of soil at site of construction, where required, for the design and construction of reservoirs, water treatment plant and waste water treatment plant. (M)
- 2. To provide information on the type of soil at site of construction, preferably with respect to the AASHO soil classification. (R)
- 3. To provide result of Percolation Test where required. (R)

Sanitation (CQHP Guideline)

Sanitation

1. Spent Water (R)

- 1-1 Spent water contribution should be based on water demand as given in para. 1-1,Guideline IV. It is recommended that at least 90% of the water consumed will be discharged as spent water.
 - 1-1-1 Spent water consists of soil and waste water. Table 1, Appendix (R)

1-1-1-1 Soil water is the spent water from WCs and urinals.

1-1-1-2 Waste water is the spent water from basins, kitchen sink, and bath rooms.

2. Soil Water Treatment and Disposal (M)

- 2-1 Soil water shall be treated before being discharged into a water course or public drain.
- 2-2 The effluent quality of the treated soil water shall conform to the following:

BOD	50 mg/l	(maximum)
COD	100 mg/l	(maximum)
SS	50 mg/l	(maximum)

2-3 Soil water discharged into YCDC sewer shall be treated to the following effluent quality:

BOD	150 mg/l	(maximum)
COD	200 mg/l	(maximum)
SS	150 mg/l	(maximum)

Note : BOD value refers to 5-day incubation period at 20^{\circ} C.

- 2-4 A permit shall be obtained from Pollution Control and Cleansing Department, YCDC, for the discharge of treated soil water.
- 2-5 Effluent of treated soil water shall be disinfected with chlorine or by any other approved method where required.
- 2-6 Where effluent is chlorinated, the residual chlorine shall be between 0.0 and 0.1 mg/l.

3. Waste Water Disposal

- 3-1 Waste water from residences may be discharged directly into public drain. (R)
- 3-2 However, waste water from kitchen sinks of restaurant shall first be discharged into a grease trap before its disposal into public drain. (M)
- 3-3 Waste water is prohibited from being discharged into YCDC sewer.(M)
- 3-4 A permit shall be obtained from Pollution Control and Cleansing Department, YCDC, before waste water is disposed of into public drain. (M)

Challenges

- Sanitation activity is not yet priority
- Weakness in water and sanitation sector are limited manpower and technical supporting
- Budget limitation
- Difficulty in the change of awareness to practice among communities
- Less Sustainability due to low cost technology

Concluding Remarks

- Myanmar has reasonable coverage for sanitation
- Capacity development for key players such as water professions from different agencies, users , local authorities stakeholder , is prerequisite , so that all stakeholders need to encourage integrated approach, help in addressing other sector problems
- To set up the Subsidy system for homeowner leading to appropriate wastewater treatment system
- So, law enforcement is also essential for implement more comprehensive formation of municipal wastewater treatment and could be more effective and useful for the country

