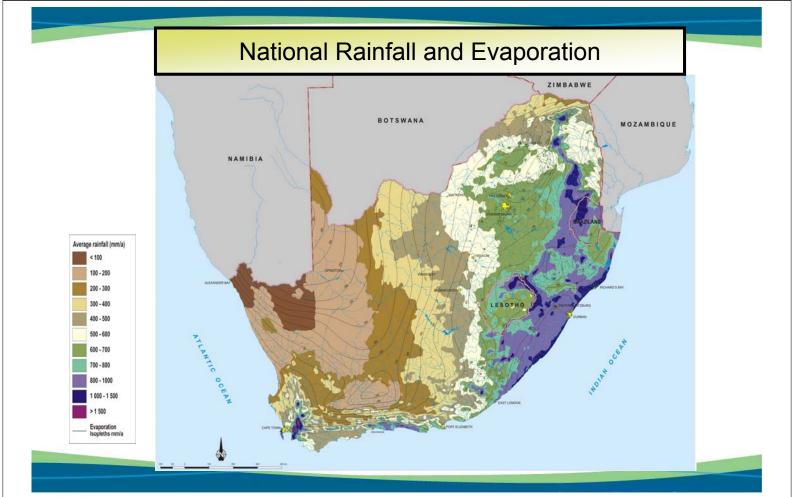
資料10

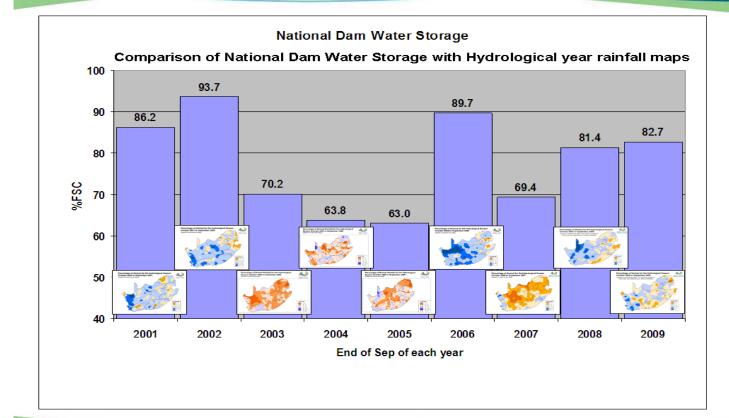
#### 資料10 南アフリカ水インフラセミナー配付資料

## Water Infrastructure Development in South Africa

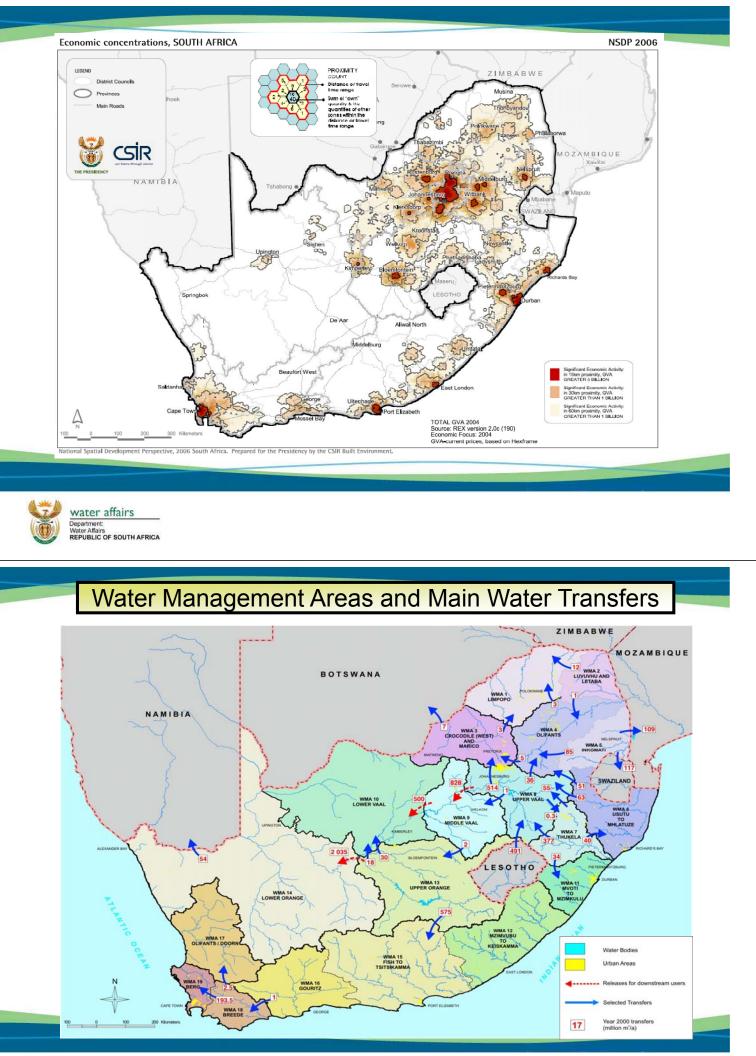

## Director General Mr M Sirenya

16 February 2012

Tokyo, Japan













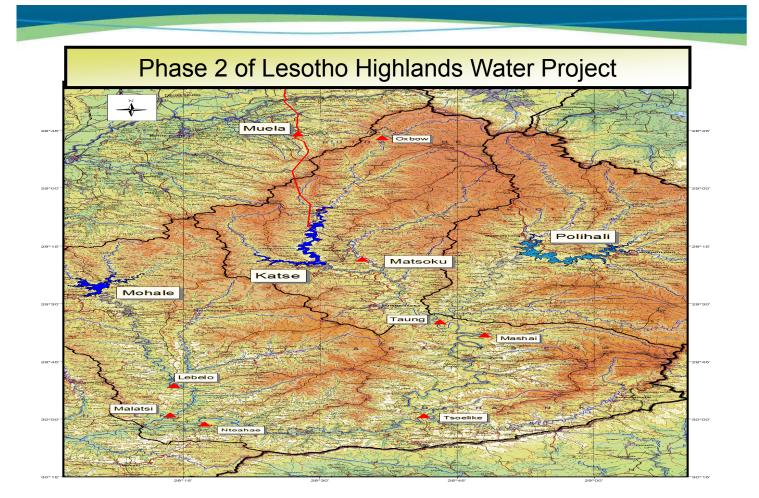





#### Conclusions from Current Water Resource Planning Work

- Water Conservation & Water Demand Management is extremely important in all areas
- Groundwater important (even for big cities like Cape Town and Nelson Mandela Bay Municipality)
- Huge potential for increase in re-use of effluent, at coast but also in inland in the Vaal River system
- More dams and inter-basin transfers inevitable in certain areas
- Acid mine Drainage
- Desalination of Seawater
- Virtual Water




#### Conclusions from Current Water Resource Planning Work Cont'

- Water is going to be very expensive in future, needs to be taken into account by all
- Implementation is now the great challenge
  - Infrastructure funding issues
  - WCWDM spread over many institutions, new methods & technologies needed
  - Re-use of treated effluent acceptance by public, clear communication strategy needed
  - Compliance and enforcement (curbing unlawful use, efficient water quality management needed )



#### Current Mega Water Projects under Development

- Olifants River Water Resources Development Project (De Hoop Dam and Associated Works) (Under Construction)
- Phase 2 of Mooi-Mgeni Transfer Scheme (Spring Grove Dam & Associated Works) (Under Construction)
- Mokolo-Crocodile Water Augmentation Project (supply to Waterberg Coalfields in Limpopo Province) (Phase 1: Construction – Phase 2: Feasibility)
- Phase 2 of Lesotho Highlands Water Project (Decision Stage)
- Management of Acid Mine Drainage in the Witwatersrand Area (Gauteng Province) (Emergency Works: Construction – Long -term Solution: Feasibility Stage)





water affairs epartment: Vater Affairs EPUBLIC OF SOUTH AFRICA





#### vater affairs epartment: ater Affairs EPUBLIC OF SOUTH AFRICA

## Polihali Dam's Contribution to Vaal system

#### LHWP Phase 1: Katse and Mohale Dams Yield

780 million cubic meters per year

25 cubic meters per second

# LHWP Phase 2: Polihali Contribution to System Yield 465 million cubic meters per year 15 cubic meters per second

15 cubic meters per second

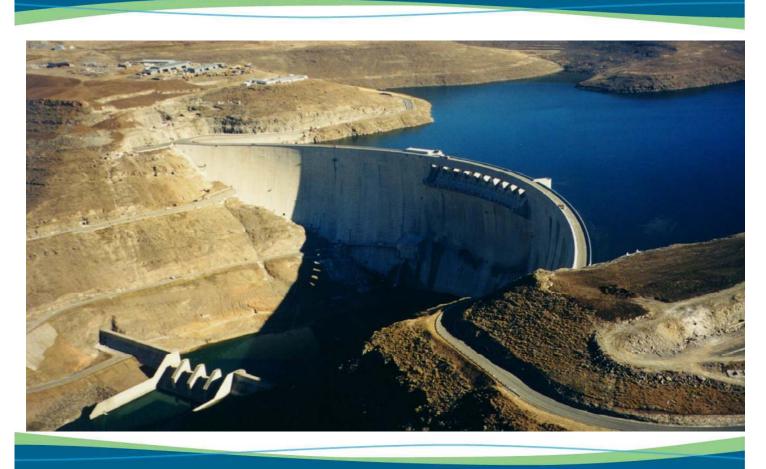
## Total LHWP Phase 1 and Phase 2 Yield

1271 million cubic meters per year

40 cubic meters per second



## Water Services Infrastructure


- Water Services are a Local Government responsibility making municipalities (and water boards) responsible for infrastructure investment, and asset management.
- National Government is assisting development of infrastructure with the Municipal Infrastructure Grant (MIG) and as of recent the Regional Bulk Infrastructure Grant (RBIG).
- The operations and maintenance of these services are generally funded from revenue generated from water services tariffs.



## The Role of Department of Water Affairs with Municipal Water Services and Infrastructure

- To Regulate Water Services:
  - This regulation is based upon incentive-based regulation programmes (e.g. Blue Drop Certification for drinking water quality; Green Drop for wastewater services). These regulation programmes promote excellence within all Key Risk Areas identified.
- To develop the sector:
  - Developing of policies and guiding frameworks
  - Facilitate provisioning of specialist support where so required.
  - Manage the Regional Bulk Infrastructure Grant (RBIG)







Water affairs Department: Water Affairs REPUBLIC OF SOUTH AFRICA

## Arigatoo







### Contents

- 1. Outline of Water Business of Hitachi
- 2. Solution for Water Treatment Systems
- **3. Solution for Information & Control Systems**

### 1.1. Water Business of Hitachi

#### From Equipment and EPC to Business Operation



%2.Hi Star Water Solutions LLC %3. RO: Reverse Osmosis

#### 

## **1.2. Technology Portfolio**

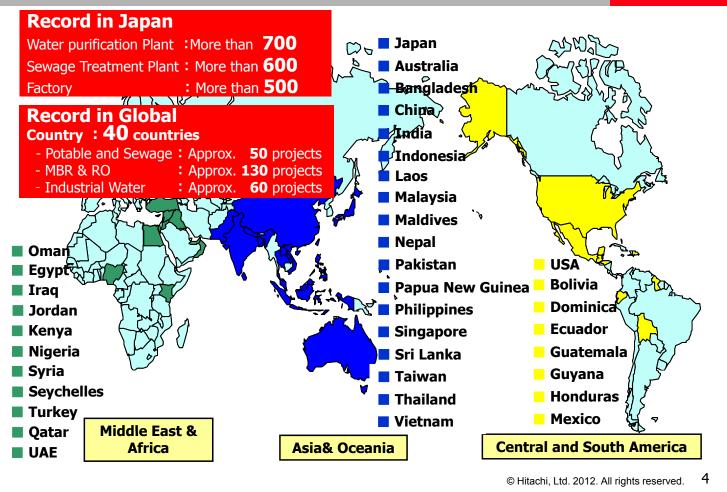
HITACHI Inspire the Next

HITACHI

Inspire the Next

#### Advanced Water Treatment Systems

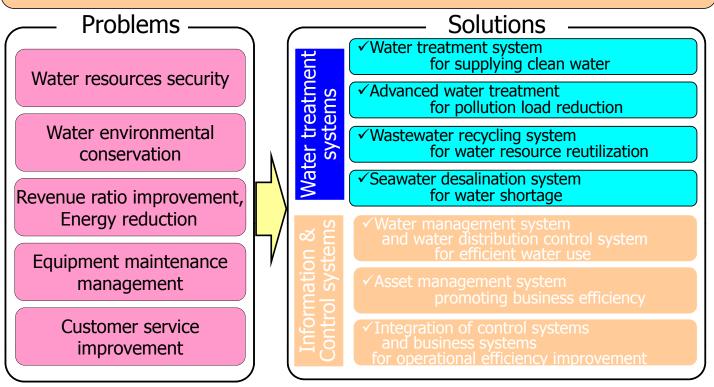
- Water Purification systems
- Sewage Treatment systems
- Seawater Desalination systems (RO)
- Membrane Bio-Reactor (MBR)
- Industrial wastewater treatment systems
- Pumps


#### Information & Control Systems

- Supervision and Control system
- Water Distribution Control system
- Pipe Routing Data Management system

#### Energy Saving Systems

- High Voltage Inverter
- Cogeneration system
- Solar Energy Generation


## 1.3. Hitachi's Water Business Record



#### 2. Solutions for Water Treatment Systems Inspire the Next

#### **Hitachi Water Environment Solutions**

for effective utilization of water resources and for CAPEX and OPEX reduction



HITACHI

Inspire the Next

HITACHI

## 2.1. Record of Water Purification

#### i) Renovation work



Balara water plant Capacity: 1,600,000m3/day (1997, Philippines)

HITACHI

Inspire the Next



Amirya water plant Capacity:430,000m3/day (1998, Egypt)

© Hitachi, Ltd. 2012. All rights reserved. 6

HITACHI

Inspire the Next

## 2.1. Record of Water Purification

ii) Expansion & upgrading work

Zay water plant Capacity:125,000m3/day (2002, Jordan)

Kandy water plant Capacity: 36,600m3/day (2006, Sri Lanka)

## 2.2. Record of Water Pumps

#### Egypt Mubarak Pumping Station

Year:2004Type:Single Suction Volute PumpsSets:21Capacity:16.7 m3/s (per pump)Head:57m (per pump)





#### **USA/CA, Edmonston Pumping Plant**

 Year:
 2007

 Type:
 Vertical, Multi-stage Centrifugal Volute Pumps

 Sets:
 4

 Capacity:
 9 m3/s (per pump)

 Head:
 600m (per pump)

 © Hitachi, Ltd. 2012. All rights reserved.
 8

### 2.3. Record of Sewerage Treatment

HITACHI Inspire the Next

### Malaysia Waste water project



Population Served: About 85,000 Capacity: About 19,000 m3/day Treatment system: Oxidation pond

#### Capacity increases in 4 times

Population Served: 352,000 Capacity: 87,000 m3/day Treatment system :standard-activated sludge process



### 2.4. Record of Wastewater Recycling System

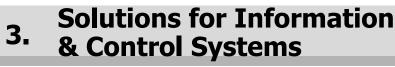
HITACHI Inspire the Next

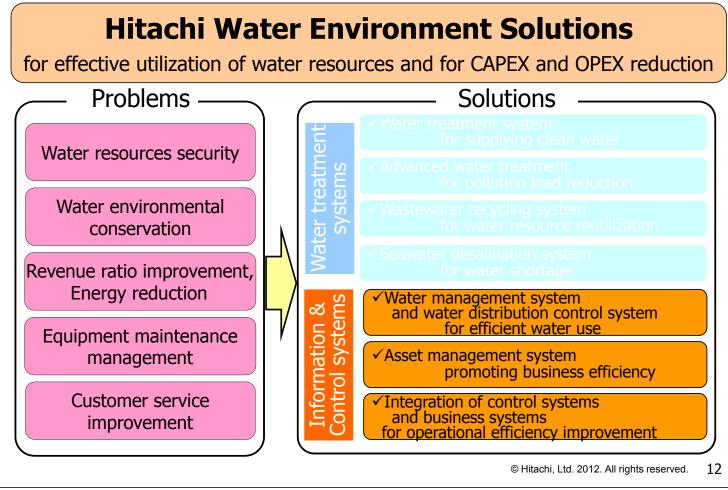
## Burj Khalifa Water Recycle System (3,000m<sup>3</sup>/day)



#### Application • Spray Pond (Max height: 150m) • For cooling tower

© Hitachi, Ltd. 2012. All rights reserved. 10


HITACHI


Inspire the Next

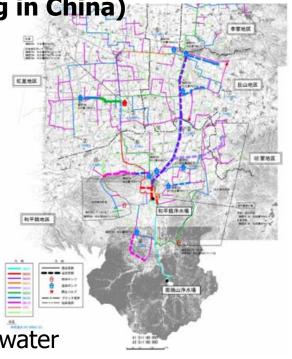
#### 2.5. Record of Solar RO System

#### Hitachi Solar RO System contributes preservation of endangered species 'Arabian Oryx' in Abu Dhabi, UAE.








## **3.1.** Record of Water Distribution Control System

#### HITACHI Inspire the Next

#### Model Project Report (on going in China)

 Profile (expected in future)
 •maximum supply amount: 30,000m<sup>3</sup>/day
 •supplied Population : 150,000

 Benefits of introducing (expected from simulation)
 energy saving by optimizing pipe network planning : 21%
 energy saving by introducing the water distribution control system : 15%
 Total 36% Energy Saving (510,000kwh/year Power Saving)



## 3.2. Water Business in Maldives

#### HITACHI is operating Maldives's water supply and wastewater treatment. M Hitachi Plant Technologies purchased a 20% share in the Maldivia company, "*Male' Water and Sewerage Company Pvt. Ltd. (MWSC*)". MWSC supplies clean water to approximately 40% of the total population of the Maldives. Improve management efficiency of MWSC by utilizing Hitachi solution ✓ Geographic Information System(GIS) ✓ Island Network SCADA Island Network Male India Infrastructure Local Island(2) Local Island(1) Maldives © Hitachi, Ltd. 2012. All rights reserved. 14 HITACHI Inspire the Next

For the Future of Our Lives, We Think About a Future of Water. HITACHI

Inspire the Next

