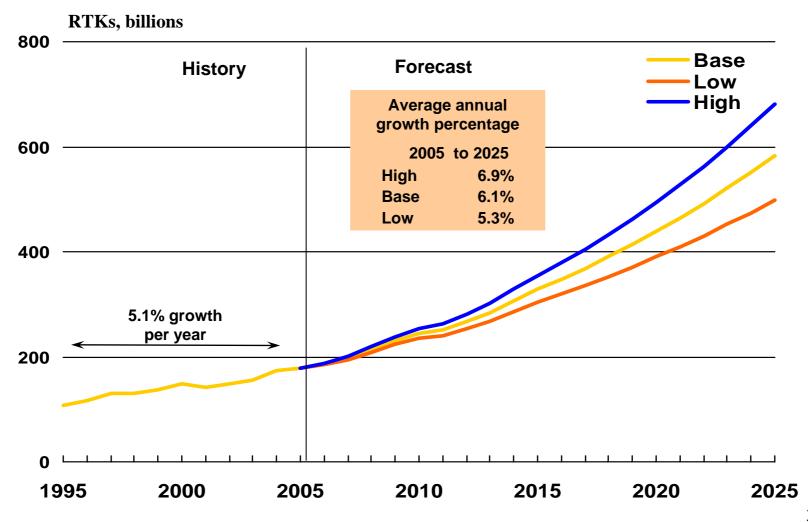
今後の国際拠点空港のあり方に関する懇談会(第2回)

日本貨物航空株式会社

執行役員 下野雄二

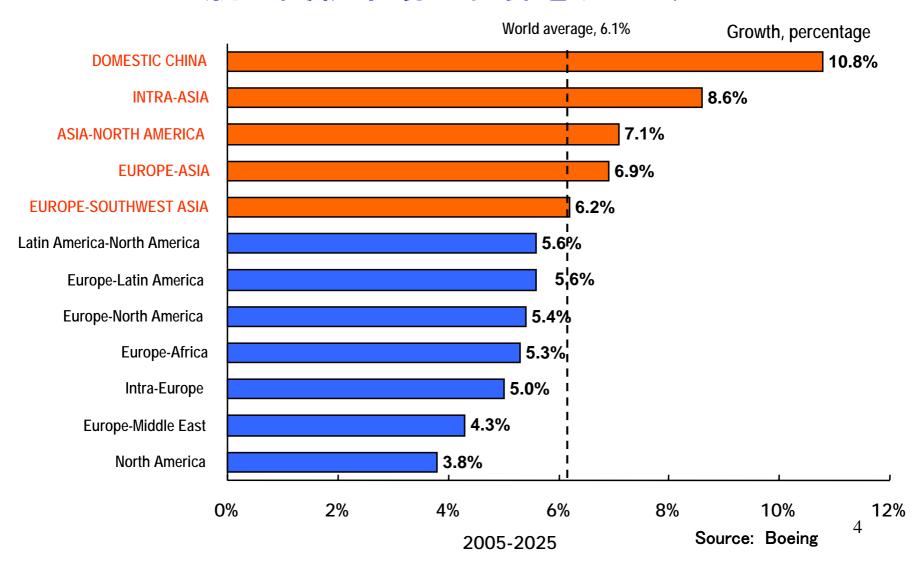
2006年11月21日

1. 国際航空貨物の現状と動向

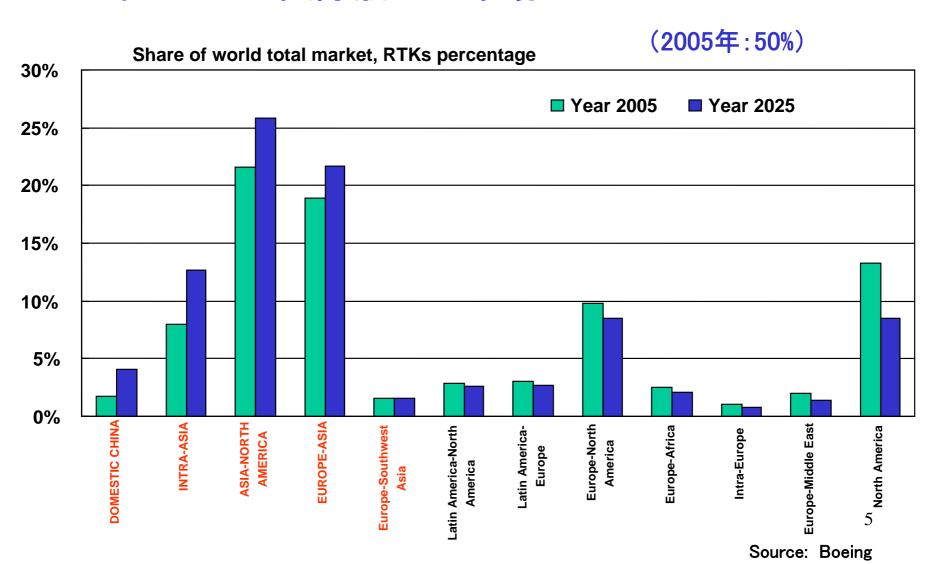

2. 経営戦略(フェニックス・プロジェクト2006-2015)

3. 国際拠点空港の戦略的活用

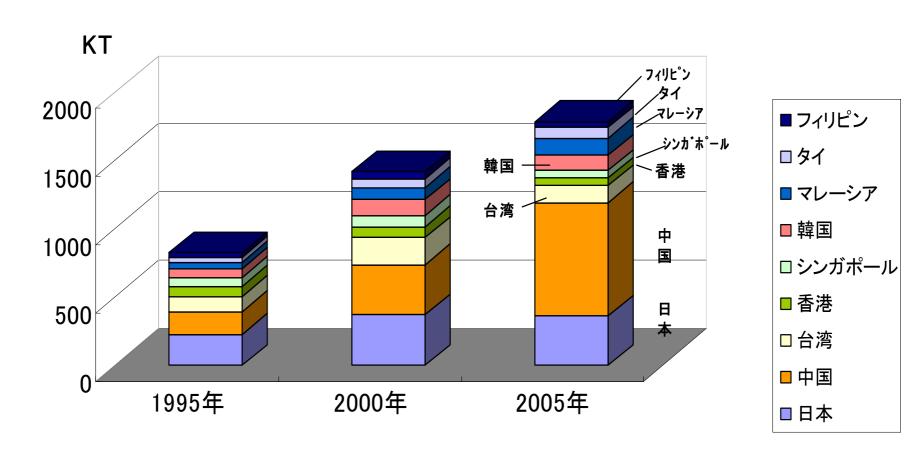
4. 国際拠点空港への期待・要望



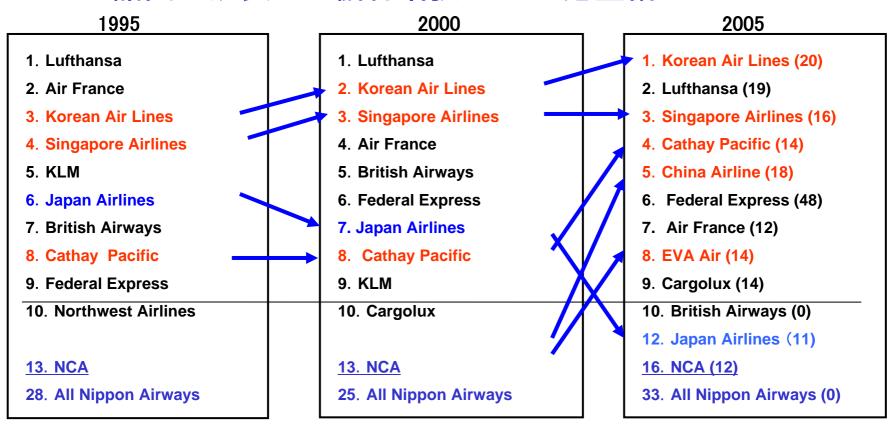
世界の国際航空貨物市場は、20年で3倍に拡大!



アジアの航空貨物市場が世界をリードする



2025年のアジア国際航空の市場シェア: 62%



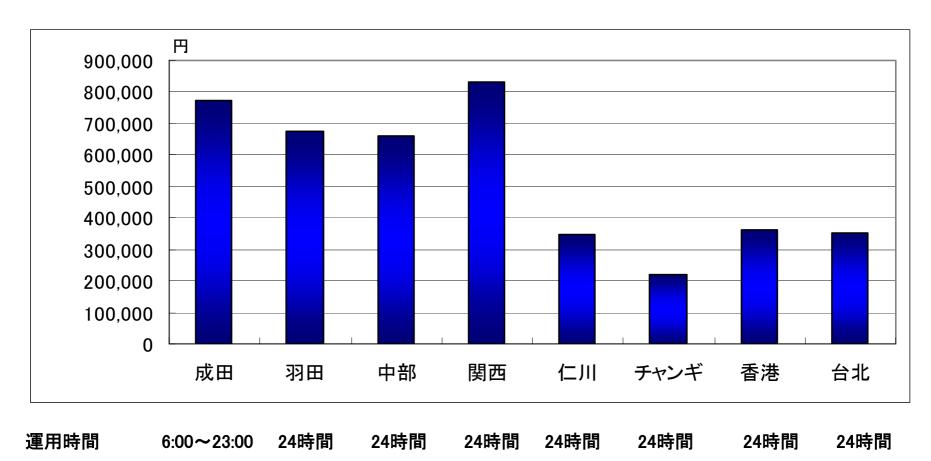
アジア→米国向け航空貨物重量の推移 急成長する中国(2005年シェア:中国47%、日本20%)

アジア諸国の成長 + 機材増強 + 空港整備

Share: Japanese	8.2 %	7.7 %	6.5 %
(Top 50) Other Asian	21.0 %	23.0 %	39.7 %
Asian Total	29.1 %	30.7 %	46.2 %

Source : IATA WATS, International Freight Tonne-Kilometers Carried

アジア諸国の空港拡充


	開港	滑走路数	将来の計画	
【アジア諸国】				
浦東(上海)	1999年	2本	2007年末 3本目の滑走路建設	
北京	1958年	2本	2007年末 3本目の滑走路建設	
仁川(韓国)	2001年	2本	2020年 4本目の滑走路建設	
バ ンコク	1948年	2本	2006年9月 新空港開港	
クアラルンプ・ール	1998年	2本	2020年 4本の滑走路	
シンカ゛ホ゜ール	1981年	2本	3本目の滑走路建設	
【日本】				
成田	1978年	2本	2009年 B滑走路2180m⇒ 2500m	
羽田	1952年	3本	2009年 4本目滑走路 再国際化	
中部	2005年	1本		
関西	1994年	1本	2007年8月 2本目滑走路(二期地	

区)


競争力のあるアジア諸国

*着陸料: B747-400Fの最大離陸重量にて算出、羽田は国内線料金にて算出

アジア主要航空会社の貨物部門のATK当たり空港関連費用(着陸料、施設費用、ハント・リング料等)

注) NCA 空港関連費用の内訳

飛行場費:34%、 ハント・リング費:61%、 施設費用:5%

NCAフェニックス・プロジェクト(中長期経営計画2006-2015)概要

Phase-1 (06-08): 収支構造を変革し、自立を達成

Phase-2 (09-11): 3大機会(成田B滑走路延伸、羽田再国際化、B747-8F導入)を掴む

Phase-3 (12-15): B747-8Fを順次導入し高規格フリートで規模の経済を実現

			Phase−1			Phase-2	Phase-3
		2005年度	2006年度	2007年度	2008年度	2011年度	2015年度
売上	高 (億円)	1,036	1,026	1,100	1,100	2,000	3,100
機数	B747-200	10	6	3	0	0	0
	B747-400	2	4	6	10	10	10
	B747-8F	0	0	0	0	8	14
	合計(年度末)	12	10	9	10	18	24
	平均機齢	16.1	12.9	7.8	1.7	3.2	6.2

次世代の高規格航空機(B747-8F)を順次導入

性能比較

	B747-8F	B747-400F	B747-200F	
乗務員	2名	2名	3名	
航続距離 (最大搭載時)	7,906km	7,850km	6,200km	
最大貨物搭載重量	134t	113.7t	108.6t	
2,500m滑走路、羽田-SIN間で の貨物搭載重量	1 '//+		73t	
稼動時間/日	稼動時間/日 15時間+α		12時間	
離陸時の騒音レベル QC2 (B777同等)		QC4	QC8	
*燃料効率 (200Fを100とした場合) 64		82	100	

Source: Boeing, NCA

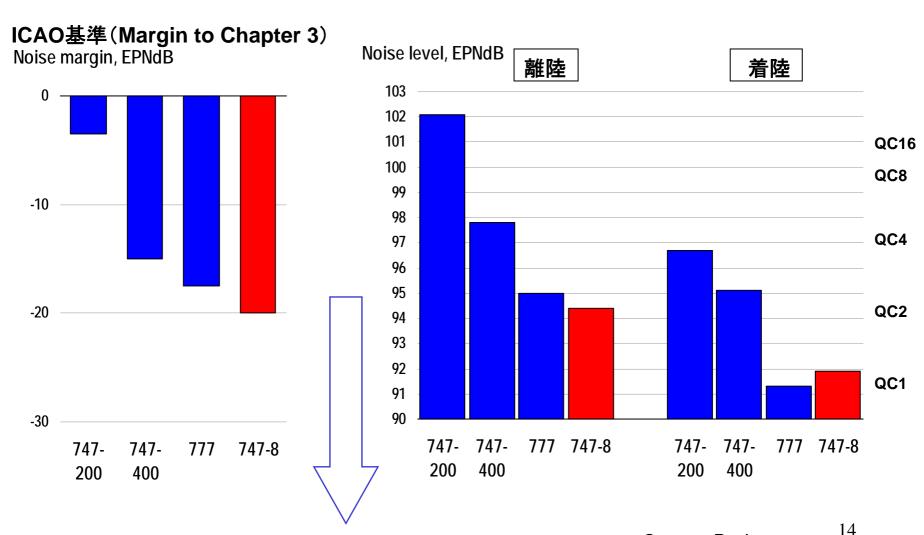
B747-8Fが世界の大型貨物機の主力となる

□ 生産/発注状況

B747-8F: 89機 (47機確定、42機オプション)

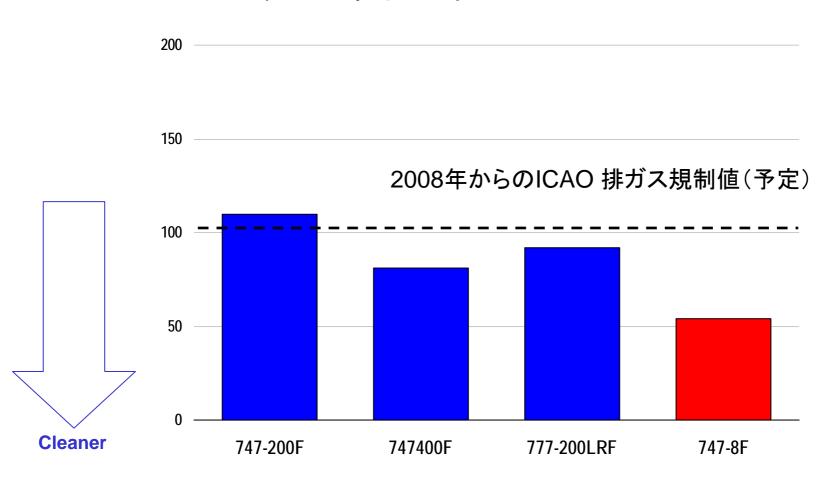
B747-400F/ERF: 161機 (最終生産総機数)

A380-800F: 25機 (15機確定、10機オプション)

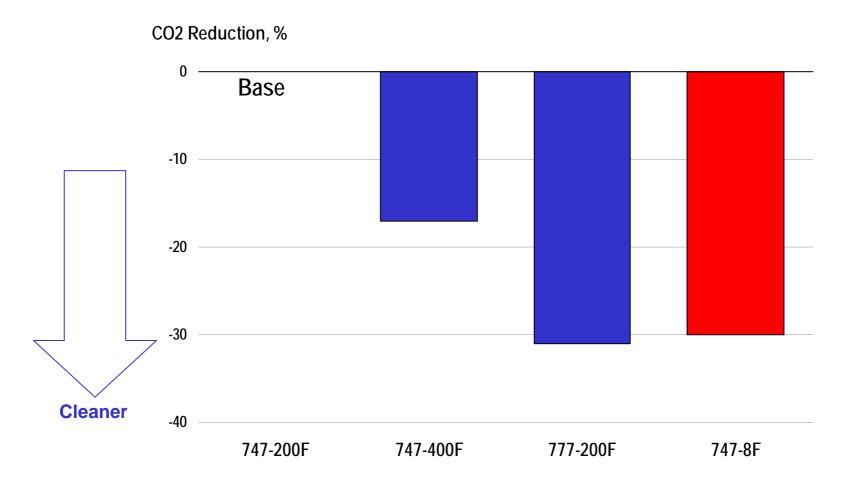

□ 後方乱気流(Wake Vortex)による後続機との必要間隔

B747-8F: 7.4km~11km(2~3分) B747-400Fと同等

A380-800F: 18.5km


□静粛性:住宅地近接の首都圏空港での深夜発着にB747-8Fは最適

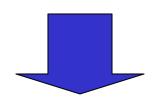
Better



□NOx: ICAOの排ガス規制基準に適合

 \Box CO²

国際拠点空港の戦略的活用


① 東京 2009年度

成田空港 B滑走路延伸(2,500m) 朝-昼-夜 (運用時間)

羽田空港再国際化 D滑走路(2.500m) 深夜-早朝(運用時間)

+

2.500m滑走路でも運航可能な環境性能と経済性に優れたB747-8F

両空港を相互に補完する首都圏国際空港クラスターとして一体的·効率的に24時間運用する。

② 関西空港/中部空港 24時間運用の利点を活かし、アジア/欧米を結ぶトランジット・ハブ空 港として積極的に活用する。

国際拠点空港への期待・要望

□首都圏国際空港クラスターを実現するためのシームレスな 24時間運用体制の確立

- * 両空港を同一税関空港とする
- * 両空港間の貨物の移動に対する運送手続きを省略する
- * 両空港間のアクセスの整備
- □成田空港内を中部空港同様に総合保税地域とする
- □高額な空港関連料金(着陸料、ハント・リング料など)をアジア近隣空港なみに低減

- □国際物流の競争力強化に資する空港貨物取扱い施設の統合・整備・運営
- □B747-8Fが支障なく運航できる空港の整備・運営

国際拠点空港への期待・要望

ICAO 空港設計基準

		翼幅	主脚幅	
ICAO	AO ICAO E 52m~65m未満		9m~14m未満	
空港設計基準	ICAO F	65m~80m未満	14m~16m未満	
	B747-400F	64.9m (E)	12.6m (E)	
機種	B747-8F	68.5m (F)	12.7m (E)	
	A380-800/800F	79.8m (F)	14.3m (F)	

①ボーイング社の調査によれば、Code E 空港でのB747-8Fの運用は十分可能。 現在、ボーイング社はB747-8FをCode E 空港で運用できるよう運用 基準に関しICAOと協議中。

②主要欧米空港は設計と運用基準を分け、B747-8Fより大型のA380をCode E 空港でも運用可能とする模様。(AMS、FRA、LHR、JFK、SFO、LAXなど)

19