資料4 世界の水インフラ整備に資する日本の技術国際会議配布資料

SANYU REC Co．，Ltd．

Company Profile

SANYU REC Co．，Ltd．
3－51 DOUCHO TAKATSUKI OSAKA JAPAN
President ：Kiyoharu ONISHI

I．SANYU REC CO．，LTD．
（本社•工場）全景（航空写真）Headquarter and factory
（in 2012）

Liaison office of SANYU REC

About concrete anticorrosion for water in Japan

Sanyu Rec Co.,Ltd Naohiro Hara

Purification plant

Service reservoir

About the Standard of JWWA

JWWA K-143

Concrete water tank inner for tap.

Epoxy coating method by using coating material

- Prehistory

- Standard
- Construction points

Association of Water and Sewage works epoxy construction

Distinction between K-135 and K-143

	K-135	K-143
NAME	Epoxy coating method for tap water.	Concrete water tank inner Coating method
Coverage	Steel pipe for tap water.	Concrete water tank
Target coating	Epoxy based coatings	Non-solvent epoxy coatings. Water epoxy coatings
Materials	No limits	Has limit
Thickness of coating film	Over 0.3mm	Over 0.5mm
Leachate test piece condition	$\begin{aligned} & 20^{\circ} \mathrm{C}(\text { Humidity } 75 \%) \times \\ & 7 \text { days }+^{\circ} \mathrm{C} \\ & \times 24 \text { hours } \end{aligned}$	$20^{\circ} \mathrm{C}$ (Humidity $\left.65 \%\right) \times 7$ days
Bonding strength	No provision	1.2 $\mathrm{N} / \mathrm{mm}^{2}\left(12.2 \mathrm{kgf} / \mathrm{cm}^{2}\right)$ Over

Sanyu Rec Corrosion Control System for Tap Water

施工設計仕様

SC－2N工法

工程	材料名	標準使用 $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	施工方法	
下塗り	サンユコート $\mathrm{L}-265$（K143対応）	0.4	金ゴテ等	
中塗り	サンユコート $\mathrm{L}-265$（K143対応）	0.4	金ゴテ等	
上塗り	サンユコート $\mathrm{L}-275$（K143対応）	0.4	ゴムヘラ・ローラ－等	
施工膜厚	$0.5 \mathrm{mm以上}$（硬化後厚さ）			

施工図

Service Reservoir Repairing Construction (built 35 years ago)

Service reservoir Ceiling Rebar exposure

Rebar Corrosion

Concrete deteriorated section removal

After Ultrahigh-pressure

Cross-section reparation Spraying on a wall

Cross-section reparation Construction Works

Epoxy putty type

 Base material accommodation

Epoxy Coating

Epoxy lining application complete

About concrete corrosion control of sewage water in Japan.

Sewer pipe corrosion condition

Total Corrosions of the Water

Concrete Corrosion Mechanism

Water Purification \& Treatment Plant Corrosion Examples

Water Treatment Process Flow

Treatment PlantCorrosions at the ceilings

JSWA Concrete anticorrosion technic manual

下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル

平成19年7月

編著 日 本下水道事業団発行 財団法人 下水道業務管理センター

Concrete Anticorrosion Materials Quality Standard

3． 7 県布型ライニンクエ法の品貨規格

 B種，A稬）に必じて，表3－11の品質规格を泽足しなければならない。

表 3－11 塩布型ライニングエ法の品筫規格

项目 顡詻	A 樓	B ${ }_{\text {柱 }}$	c 種	D ${ }_{1}$ 程
	被磄にしわ，も 5．はがれ，bれ のないこと。	同左	問	同耂
	 $1.5 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{CL}$ 上 吸水状郎 $1.2 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	間左	閏左	同左
	液に 30 目間浸估 しても被殿にふく れ，われ，故化，容出がないこと。	pH1 の破酸水訜被に30日同棲請 しても被嚘になく れ，っれ，敕化，陾出がないこと。	10ヶの硫破水寞謧に45日同没调 しても被砤になく れ，われ，教化，答出がないこと。	10\％の磒酸水沿㳖に60日間没買 しても被願にふく れ，われ，数化，客出がないこと，
	－	－	涐に120日間设話した時の媛入 詨して 100 以下て あること，かつ， $200 \mu \mathrm{~m}$ 以下であ なこと ること．	紴に 120 日間誛波した時の侵入裉さが設旪屁をに対して 5 以 以下で あること，かつ。 $100 \mu \mathrm{~m}$ 以下であ ること。
耐フィカリ性	水贀化力ルンクム移和水諳液に 30日間椤治しても被群におくれ，わ か，教化，湆出加 ないこと。	同左	水酸化カルンウム枹和水話渡に 45日間澴活しても被赈におくれ，わ れ，帾化，靥出が ないこと。	水桃化カルンウム私和水謧渡に60旦間渡権しても被板におくれ，わ れ，政化，零出が ないこと，
＊	通水蚞が	遥里量が	透木佱が	遥水盘が
	0．30g 以 F F	0.25 g 以 C 下	0.20 g 以下F	0．15g 以下

（2）防食被覆局は，公的譏関における試譏において，朔項の品賏規格に適合し たものでなくではならない。なお，試験方法は，「付属資料1 防食被酸㷴 に関する品質詞験方法」による。
（3）造布型ライニングエ法に使用する材料は，前項の馬験に便用した同一の材
用しなければならない。

Corrosion environment classification Designed corrosion environment classification

3． 4 鹿食理境分疑及び設計属食㴻境分影

防食設計における鹰食嫄境は， $\mathrm{H}_{2} \mathrm{~S}$ カスの発生程度に基づき，表3－7 のとおり分䫫する。
改藴の琉易を考慮して，表3－8に示すとおりとする。

表3－7 墕食棵䚈分制

分 醋	樜食置境
1 觻	年間平均 $\mathrm{H}_{2} \mathrm{~S}$ カスス湿度が 50 ppm 以上で，硨酸によるコンクリート鹿食が棲度に見られる庶食掸境
II 㬵	年間平均 $\mathrm{H}_{2} \mathrm{~S}$ ガス湌度が 10 ppm 以上 50 ppm 末渾で，酼酸による
III 䅡	リート騳食が明らかに見られる颜食幅境
IV 䫅	磄酸による腐食はほとんと生じないが，コンクリートに接する旅相が銯性状能になりえる䳸食闌境

表 3－8 杸堛庐食環境分類

年間平均 $\mathrm{H}_{2} \mathrm{~S}$ ガス港度	点検•補侁•改築の趡易	
	易	維
50ppm 以上	1 1 碩	I_{2} 類
10 ppm 以上 50ppm 未 未 㴖	吅䋶	II_{2} 頪
10ppm 米满	III ${ }_{1}$ 類	III ${ }_{\text {頪 }}$

$\mathrm{H}_{2} \mathrm{~S}$ 濃度

50 ppm	I 1 類	I_{2} 類
10 ppm	II 1 類	II_{2} 類
	III_{1} 類	II_{2} 類
易		

防食設計の判断基準（点検•補修•改築の難易）

易	難
•代替施設があり，更新時に休止できる。	•構築後，狭いため人が入りにくい。
•仮施設が建設でき，総合的に経済的であ	•代替施設がないので休止期間を長期間と
る。	れない。
•日常点検•定期点検が可能である。	•代替施設を建設するのが，総合的に不経
	済である。
	•腐食環境の改善が困難である。
	•日常点検•定期点検が困難である。

図 3－6 下水道施設における設計腐食環境の概念図 （硫酸によるコンクリート腐食を対象）

Example of corrosion environment classification at treatment plant

About Sewerage repair method

Removal of the Corroded Section with High Pressure Water Jet.

Concrete Surface after the

 deteriorated section removed.

Repair Work on Cut Surface by Spraying Methodsr

Completed

Epoxy Resin Lining Process.

Epoxy Resin Lining Process.

the Lining completed.

Manhole Repair Work

Ceramic Coatings

Manhole Coated with Ceramic Coatings.

Anticorrosion hume pipe (SANGUARD PIPE)

- Suitable for sewer pipe, storm sewer, industrial Waste pipe etc.
- With a smaller roughness coefficient, able to make one size smaller pipe. = Cost reducing!
Inner cladding is Polyurethane resin which is flexible with cracks made by transformation etc. Water can not leak outside.

Sunguard Pipe Coating
 Processes.

Sunguard Pipe-production Processes.

Sunguard Pipe-Anti corrosion type

LCC (Life Cycle Cost) Reducing

Water treatment facilities need a huge cost when repairing if operated with bare cement at construction time.
, With concrete corrosion control as appropriate in advance, concrete can extend their lives.

- Also, LCC reducing is possible with optimal preventive maintenance rather than repairing after gotten deterioration.

Solution of Water Infra Business
 Operation \& Maintenance
 ReDu

Water Transmission

Fourth Meeting of "the PPP Council for Overseas Water Infrastructure" 1st February 2013

Tokyo, Japan

NISHIMURA Munenori

TGT Infrastructure Business Department TORISHIMA PUMP MFG.CO, LTD.

() TORISHIMA

Contents

1. Introduction of Torishima
2. Reduction of Energy and CO_{2} Emission
3. Imagine without Torishima
4. Water Transmission
5. ReDu
6. Operation and Maintenance

(ค) TORISHIMA

TORISHIMA PUMP MFG.CO, LTD.
Since 1919

Since 1919

(t) TORISHIMA

TORISHIMA Pumps have been developed, modified to customer's needs

Business Domain

() TORISHIMA

- EPC Projects

Full turn-key construction water works / transmission, Drainage, Irrigation Balance of Plant etc.

- Operation \& Maintenance
- Solution provider

Spare parts, repair facilities, Service, Maintenance, Up-Grade, REDU (Re Engineering and Design Up)
Total plant maintenance solutions

Reduction of Energy and CO_{2} Emission

Over 90% of the life cycle costs (LCC) for pumps are electricity bill for operation Big reduction of LCC and CO_{2} emission by Eco Pump

< Operating condition>
 PUMP:CAL SIZE 32~150mm
 Prerequisite :60Hz-4P
 Electric cost:10yen/kWh

8, 760hours/year, 15 years ($131,400 h o u r s$)

- Main replacement parts(The number of times of exchange) CASING (1), IMPELLER(2), SHAFT(2), WEAR RING(2), BEARING(7), GASKET(7), COUPLING(1), COUPLING RUBBER(7), MECHANICAL SEAL(7)

< Electric cost and Return of Investment >			
Pump size150mm Motor capacity 75 kW			
Eff. Improvement	5%	10%	15%
Power Reduction	3.75 kW	7.5 kW	11.25 kW
Annual Power Reduction	$32,850 \mathrm{kWh}$	$65,700 \mathrm{kWh}$	$98,550 \mathrm{kWh}$
Cost Saving	$¥ 4.92 \mathrm{mil}$	$¥ 9.85 \mathrm{mil}$	$¥ 14.78 \mathrm{mil}$
Return of investment	4.6 years	$2.3 y e a r s$	$1.5 y$ years
Annual CO2 Reduction	$14 \mathrm{t}-\mathrm{CO}_{2}$	$28 \mathrm{t}-\mathrm{CO}_{2}$	$42 \mathrm{t}-\mathrm{CO}_{2}$

※Cost Saving $=$ Power Reduction $\times 131,40$ hours $\times ¥ 10$ ※Rol $=¥ 1.50$ mil $\div($ Annual Power Reduction $\times ¥ 10)$ ※CO2emission factor is based on TEPCO figure in 2007 $0.000425\left(\mathrm{t}-\mathrm{CO}_{2} / \mathrm{kWh}\right)$

- Pump is most energy consumed item in the Water System.
- Over 90\% is Energy cost in LCC.

No Pump in Ideal Water System But Impossible.
Imagine the Life without Pump

High Efficiency Pump

 Ideal Pumping System

Water Transmission Less Pumping Stations with High Head Pump

Transmission of Water for Long Distance Pipe Line

(1) TORISHIMA

Shuwaihat Potable Water Transmission Project, UAE (1/2)

Long distance (140 km) water supply pump for drinking water manufactured in the seawater desalination plant, Shuweihat water transmission scheme in U.A.E. (Abu Dhabi Water and Electricity Authority) (CDM800x500 : 4700kW)

($ا$) TORISHIMA

Shuwaihat Potable Water Transmission Project, UAE (2/2)

Musaafah pumping station
2,840 $\mathrm{m}^{3} / \mathrm{h}$ - 65m - 4690kW - 5units

Serge Vessels
Dis.side : $120 \mathrm{~m}^{3} / \mathrm{h}$ Vessel - 16 units Suc.side : $20 \mathrm{~m}^{3} / \mathrm{h}$ Vessel - 2 units

(大) TORISHIMA

Water Transmission Plant in AI Ain, UAE

Al Ain (UAE)
Main Pump
(CDM800×500 : 5200kW)

((ا) TORISHIMA

Pumps in Water Transmission Plant (1/2)

Shuqaiq 2 (Saudi Arabia)
Main Pump
(MSH300/2T : 6150kW)

New Mirfa (UAE)
Main Pump
(MHH350/6 : 1950kW)

(大) TORISHIMA

Pumps in Water Transmission Plant (2/2)

Melbroune (Australia)
Transfer Pump (MSH450/2T : 3000kW)

AI Ain (UAE)
Main Pumps
(CDM800x500 : 4800kW)

($($) TORISHIMA

©TORISHIMA somiceon Re Engineering \& Design Up
 REDII

Re Engineer - manufacture original part

Design Up - improve design of original part/pump

() TORISHIMA

Pump Manufacturer's Specialty

- Scan by 3D machine
-3D Drawing
-Hydraulic analysis
-Manufacturing Drawings
-Manufacturing

\bullet Re Engineering \& Design Up

(b) TORISHIMA

(1) TORISHIMA

3D Scan of Double Entry Volute for 5MW BRP

(() TORISHIMA

3D Solid Model of Double Entry Volute for 5MW BRP

Original NiResist Cast Iron Column Piece

Failed due to stress corrosion

(b) TORISHIMA

Manufacturing Facility FOUNDRY SHOP

Manufacturing Facility Machining Shop

Testing Facility ISO 9906
 JIS B8301 : 2000
 ANSI/HI 6.2000

Low Pressure Facility Test

380-600V \& 3.3 kV - 6.6 kV Motor Control Center with Variable Spee Drive

Low Pressure Facility Test

Pressurized \& Vacuum Tank

Pump Services

- Installation
- Commissioning
- Repair
- Refurbishment
- Performance Analysis
- Upgrade
- Spareparts Supply
- Operate \& Maintenance
- Troubleshooting

TorishimaGuna Engineering Services

Line of Services

Field Services

- Condition Monitoring
- In-Situ Vibration Analysis \& Balance
- On Site Efficiency Testing
- Installation \& Commissioning

TorishimaGuna Engineering Services

Thank you for your attention

＜Aquarator＞

The World＇s First
Submerged Mechanical
Aerator／Agitator

HANSHIN ENGINEERING Co．，Ltd．

Company Summary

＜HANSHIN ENGINEERING Co．，Ltd．＞
－Establishment：November 13， 1950
－Business：Gear speed reducers／ Waterway facilities equipment／ Water－treatment facilities equipment／ Industrial facilities equipment
－Capital：72，600，000 yen
－President：Hiroyuki Izui
－Employees： 100

Company Location

Factory（Hikami）

Company History

－ 1950 Establishment of HANSHIN ENGINEERING Co．，Ltd．
－ 1970 Development，production and sales of drive unit for sludge collector，thickener，clarifier
－ 1975 Development，production and sales of the world＇s first submerged mechanical aerator／agitator（Aquarator）
－ 1987 Development，production and sales of AS controller
－ 1992 Delivery of supernatant water discharger
－ 2004 Delivery of bio processing unit
－ 2006 Delivery of turbo blower

Environmental Equipments

System Flow for Wastewater Treatment

Home \＆Business
Factory
Microorganisms consume pollution material as a nutrient source． It is important to activate microorganisms＝sludge in a biological reactor！

Wastewater treatment plant

River／Lake／Sea

Aquarator

Aquarator $=$ the world＇s first Submerged Mechanical Aerator／Agitator

$<F$ Type	
$F-15$	$(1.5 \mathrm{~kW})$
$F-22$	$(2.2 \mathrm{~kW})$
$F-37$	$(3.7 \mathrm{~kW})$
$F-55$	$(5.5 \mathrm{~kW})$
$F-75$	$(7.5 \mathrm{~kW})$
$F-110$	$(11.0 \mathrm{~kW})$
$F-150$	$(15.0 \mathrm{~kW})$
$F-185$	$(18.5 \mathrm{~kW})$
$F-200$	$(22.0 \mathrm{~kW})$
$F-300$	$(30.0 \mathrm{~kW})$

Problems of Existing Aerator

＜Problems for environment \＆ pollution aspect＞
－Energy efficiency is bad．
－Occur noise and vibration．
－Make dispersion sewage mist．
－＞Change for the worse sanitary conditions．
－Accumulate sludge．
－＞Occur bad smell．
－＞Change for the worse treated water quality．

Comparison of Aeration Equipment

－Lack of agitation at the bottom of a tank －Dispersion of sewerage mist

－Sedimentation of sludge －Progression of clogging

－Realization of extremely high energy efficiency
－Easy maintenance
－Accommodates various
processing methods
－No clogging

Comparison of Energy Cost

Aeration system	Submerged mechanical aeration／agitation system （Aquarator＋Blower）	Surface aeration system （Surface aerator）
Electrical power	```<Unit number> 21 units <1 unit> P = 45.1 kWh```	```<Unit number> 31 units <1 unit> P = 55kWh```
	$P 1+P 2=947 \mathrm{kWh}$	$\mathrm{P} 1=1705 \mathrm{kWh}$
Energy reduction	44．5\％（758kWh）	
Cost effective	385,125 USD ${ }_{(6,640,080 \mathrm{~kW} / \mathrm{year})}$	

＊Commercial standard electricity rate（ $1 \mathrm{~kW} / 1 \mathrm{~h}$ ）of Bangkok，Thailand was estimated as 0．058USD．
The data is based on Japan External Trade Organization（JETRO）．
http：／／www．jetro．go．jp／world／search／cost／
Paper Mill in Thailand

Operation Situation of the Aquarator

Before aeration

Introduction Case of the Aquarator

－Aquarator is the most suitable equipment for biological treatment of industrial wastewater．

Advantage of the Aquarator

－The equipment is able to be used flexibly as aerobic agitation or anaerobic agitation．

Installation Situation of the Aquarator

Feature of the Aquarator

－Equipment installation and removal is easy．
－Water and sludge are not required to be removed when installing or removing the equipment because the main body is not fixed on a tank bottom．

Record，Assessment，Certification，Specification in Japan

HANSHIN ENGINEERING Co．，Ltd．
＜Head Office（Osaka）＞
2－26－7 Shikanjima，Konohana－ku，Osaka 554－0014，Japan
TEL．＋81－6－6461－6551 FAX．＋81－6－6461－6555

＜Branch Office（Tokyo）＞

4th Floor，Shibakaga Bldg．，2－3－1 Shibakoen，Minato－ku，Tokyo 105－0011，Japan
TEL．＋81－3－5776－1401 FAX．＋81－3－3438－2171
＜Factory（Hikami）＞
1383 Shingo，Hikami－cho，Tanba－shi，Hyogo 669－3571，Japan
TEL．＋81－795－82－3422 FAX．＋81－795－82－3424
＜Sales department＞
Hirotaka Kawashima
kawashima＠hanshin－pm．co．jp
http：／／www．hanshin－pm．co．jp／

METAU/ATER

Novel Energy-efficient Municipal Wastewater Treatment System for Low Carbon Society

February 1, 2013

METMV/ATER

A Glance of METAWATER

METAWATER is one of the leading engineering companies in Japan with unique products and wide range of experiences from product supply, EPC up to O\&M service incl. PFI projects.

Outline

Capital	JPY 7.5 Bil. (ca. US\$ 85 Mil.)
Net Sales	JPY 100 Bil. (FY2011) (ca. US\$ 1.2 Bil.)
Employees	1,800 (consolidated)
Location (JPN)	Tokyo (Head Office), Hino Office, Nagoya Office
$($ Intl.)	China, Korea, Germany, USA, Vietnam

more than 30% of share in Japan

Top supplier (more than 170 installations)

more than 25% of share (more than 45% in large scale)

PFI/BOT Business

more than 10 installations

Development Goal

METAU／ATER

－New wastewater treatment process suitable for developing countries in the tropics
－Lower capital \＆operational costs than those of conventional process（ASP）
－Feasible combination with biosolid energy utilization（digestion）in the future

Pilot Tests in Vietnam

METAV／／ATER

The pilot study has been carried out in Da Nang，Vietnam supported by universities，authorities in both countries and the MLIT of Japan

> Hệ thống xử lý nước thải đô thị tiên tiến, hiệu quả cao.

Novel energy－efficient municipal wastewater treatment system先進的省エネ型下水処理システム

> Demonstration of new suitable sewage treatment system for Da Nang City

Pilot Plant Flow Diagram

METAU/ATER

Process Comparison

The new process can achieve the high effluent quality with lower energy consumption and easier O\&M than ASP

	New Process	Anaerobic Lagoon * (AL)	Activated Sludge Process (ASP)
Power Demand		*Common in Vietnam	
	Pump (Head 7m)		Pump(Head4m)
	$0.05 \mathrm{kWh} / \mathrm{m}^{3}$	$0.02 \mathrm{kWh} / \mathrm{m}^{3}$	$0.30 \mathrm{kWh} / \mathrm{m}^{3}$
Effluent BOD	$10 \sim 20 \mathrm{mg} / \mathrm{L}$	$30 \sim 90 \mathrm{mg} / \mathrm{L}$	$10 \mathrm{mg} / \mathrm{L}$
O\&M	Easy	Easy	Not easy
Evaluation	Good	NG	NG

Pilot Plant in Da Nang

METMW/ATER

High Rate Filtrer

METMV/ATER

Filter material : Special plastic Size : $7.5 \mathrm{~mm} \times 7.5 \mathrm{~mm} \times 4 \mathrm{~mm}$

New Media Trickling Filter

- Although Inlet BOD and SS was low due to the rainy season, the high-rate filter and the trickling filter worked as expected
- BOD and SS removal rate by the high-rate filter is about $50-60 \%$, which is higher than that of primary clarifier
- Data accumulation will be continued including the dry season

Pilot test will continue through November, 2013

Thank you for your attention.

Beyond engineering

Contact: www.metawater.co.jp/eng/index.html info-kaigai@metawater.co.jp

