資料4

資料4 世界の水インフラ整備に資する日本の技術

国際会議配布資料

Liaison office of SANYU REC

E-mail:bessho@sanyu-rec.jp

About concrete anticorrosion for water in Japan

Sanyu Rec Co.,Ltd Naohiro Hara

Purification plant

Service reservoir

About the Standard of JWWA

Distinction between K-135 and K-143

	K-135	K-143
NAME	Epoxy coating method for tap water.	Concrete water tank inner Coating method
Coverage	Steel pipe for tap water.	Concrete water tank
Target coating	Epoxy based coatings	Non-solvent epoxy coatings. Water epoxy coatings
Materials	No limits	Has limit
Thickness of coating film	Over 0.3mm	Over 0.5mm
Leachate test piece condition	20°C(Humidity75%)× 7days+°C ×24hours	20°C(Humidity 65%)×7days
Bonding strength	No provision	1.2 N/mm ² (12.2kgf/cm ²)Over

Sanyu Rec Corrosion Control System for Tap Water

施工設計仕様

SC-2N工法

工程	材料名	標準使用 (kg/m ³)	施工方法
下塗り	サンユコート L-265(K143対応)	0.4	金ゴテ等
中塗り	サンユコート L-265(K143対応)	0.4	金ゴテ等
上塗り	サンユコート L-275(K143対応)	0.4	ゴムヘラ・ローラー等
施工膜厚	0.5mm以上(硬化後厚さ)		

施工図

Service Reservoir Repairing Construction (built 35 years ago)

Service reservoir Ceiling Rebar exposure

Rebar Corrosion

Concrete deteriorated section removal

After Ultrahigh-pressure

Cross-section reparation Spraying on a wall

Cross-section reparation Construction Works

Epoxy putty type Base material accommodation

Epoxy Coating

Epoxy lining application complete

About concrete corrosion control of sewage water in Japan.

Sewer pipe corrosion condition

Street Collapsed and Indented after hume pipes Corroded.

Total Corrosions of the Water Piping systems

Water Piping Systems-Inner Corrosions

Water Piping Systems-Inner corrosions⁽²⁾

Concrete Corrosion Mechanism

Water Purification & Treatment Plant Corrosion Examples

Water Treatment Process Flow

Treatment Plant— Corrosions at the ceilings

Water Treatment Plantceiling Corrosions⁽²⁾

JSWA Concrete anticorrosion technic manual

下水道コンクリート構造物の腐食抑制技術 及び防食技術マニュアル

平成 19 年 7 月

編著 日 本 下 水 道 事 業 団 発行 財団法人 下水道業務管理センター

Concrete Anticorrosion Materials Quality Standard

- 3.7 塗布型ライニング工法の品質規格
- (1)塗布型ライニング工法の防食被覆層は、適用する工法規格(D₁種、C種、 B種、A種)に応じて、表 3-11の品質規格を満足しなければならない。

項目 規格	A積	B種	C 種	D, 穩
被 覆 の 外 観	被 穫 にしわ、む ら、はがれ、われ のないこと。	同左。	同左	同左
コンクリート との 接着性	標準状態 1.5N/mm ² 以上 吸水状態 1.2N/mm ² 以上	同左	同左	同左
耐酸性	pH3 の硫酸水溶 液に30日間浸渍 しても被殺にふく れ、われ、軟化、 溶出がないこと。	pH1 の硫酸水溶 液に 30 日間浸漬 しても被覆にふく れ、われ、軟化、 溶出がないこと。	10%の硫酸水溶 液に45日間浸漬 しても被覆にふく れ、われ、軟化、 溶出がないこと。	10%の硫酸水器 液に60日間浸渍 しても被覆にふく れ、われ、軟化、 溶出がないこと。
磁 黄 侵 入 深 さ			10%の 征 酸水 将 液に 120 日間浸 法した時の侵入 深さが設計厚さに 対して 10%以下で あること、かつ、 200µm 以下であ ること。	10%の 磁酸 水 液に 120 日間浸 漬した時の 侵入 深さが設計 厚さに 対して 5%以下で あること、かつ、 100 µm 以下であ ること、
耐 ア ル カリ性	木酸化カルシウム 飽和水溶液に 30 日間 浸 値しても 被程にふくれ、わ れ、軟化、溶出が ないこと。	同左	水酸化カルシウム 熱和水溶液に45 日間浸荷しても 被覆にふくれ、わ れ、軟化、溶出が ないこと。	水酸化カルシウム 飽和水溶液に 60 日間浸漬しても 被糧にふくれ、お れ、軟化、溶出か ないこと。
	透水设が	遊木量が	透水量が	透水量が

料であって、防食被覆材料製造業者が発行する品質証明書があるものを使 用しなければならない。

Corrosion environment classification Designed corrosion environment classification

防食設計 分類する。 また、検 改築の難易	における腐 対象施設 を考慮して	食環境は、H ₂ S ガスの の設計腐食環境は、腐 、表 3-8 に示すとおり。	発生程度に基づき、表 3-7 のとお 食環境分類に施設の点検、補修及: とする。	
		表 3-7 腐食環	寬分類	
分類		腐力	1 環 境	
1 30	年間平均 H ₂ S ガス濃度が 50ppm 以上で、硫酸によるコンクリート腐 食が極度に見られる腐食環境			
Ⅲ 類	年間平均 H ₂ S ガス濃度が 10ppm 以上 50ppm 未満で、硫酸による コンクリート腐食が顕著に見られる腐食環境			
Ⅲ 類	年間平均 HaS ガス濃度が 10ppm 未満ではあるが、硫酸によるコンク リート腐食が明らかに見られる腐食環境			
IV 類	磁酸による腐食はほとんど生じないが、コンクリートに接する液相が酸 性状態になりえる腐食環境			
		表 3-8 設計腐食	環境分類	
年間	平均	点検	・補修・改築の難易	
H.S. H.	ス濃度	33. 98		

点検・補修・改築の難易			
易	難		
I , 190	I 2 類		
п, я	II 2 M		
Ⅲ1 類	Ш ₂ Яй		
	点検・補修・ 	点検・補修・改築の難易 難 月 第 日,類 日,類 田,類 田,類	

防食設計の判断基準(点検・補修・改築の難易)

易	難
 ・代替施設があり、更新時に休止できる。 ・仮施設が建設でき、総合的に経済的である。 ・日常点検・定期点検が可能である。 	 ・構築後、狭いため人が入りにくい。 ・代替施設がないので休止期間を長期間とれない。 ・代替施設を建設するのが、総合的に不経済である。 ・腐食環境の改善が困難である。 ・日常点検・定期点検が困難である。

図 3-6 下水道施設における設計腐食環境の概念図 (硫酸によるコンクリート腐食を対象)

Example of corrosion environment classification at treatment plant

設計対象施設	腐食環境	
1. ポンプ施設		
(1) 流入マンホール	Ⅱ類	
(2) ゲート室	Ⅱ 類	-
(3) 沈砂池・スクリーン水路	目類	-
(4) ポンプ井	田和	
(5) 汚水調整槽	11 類	
(6) 分配槽	II \$90	
(7) 若水井・吐出井	11 類i	
2. 水処理施設		
(1) 導水きょ (吐出井~初沈流入水路の開水路区開)	田朝	
(2) プリエアレーションタンク	工類	
(3) 最初沈殿池流入水路	II 199	_
(4) 最初沈殿池	Ⅱ 類	
(5) 返送汚泥水路	田間	
(6) 最初沈殿池流出水路、反応タンク流入水路	11 数	
(7) 付帯する施設		
 初沈流出トラフ 	II \$\$\$	
2) 初沈スカムビット及びスカム水路	I MA	
3) 終沈スカムピット及びスカム水路	I類	
3. 汚泥処理施設		
(1) 汚泥濃縮槽	I MA	
(2) 汚泥消化槽(気相部)	I類	
(3) 汚泥消化槽(液相部)*	IV III	
(4) 汚泥洗浄タンク	I類	
(5) 汚泥貯留槽	1 類	
(6) 脱離液、分離液ビット	1 類	
(7) 受泥槽	I 🕅	
(8) 返流水槽、返流水管マンホール	I 類	
(9) 脱水汚泥ビット	Ⅲ 類	
(10) コンポスト発酵槽	11 類	

About Sewerage repair method

Removal of the Corroded Section with High Pressure Water Jet.

Concrete Surface after the deteriorated section removed.

Repair Work on Cut Surface by Spraying Methods

Epoxy Resin Lining Process.

the Lining completed.

Manhole Repair Work

Ceramic Coatings

Manhole Coated with Ceramic Coatings.

Anticorrosion hume pipe (SANGUARD PIPE)

Suitable for sewer pipe, storm sewer, industrial waste pipe etc.

With a smaller roughness coefficient, able to make one size smaller pipe. = Cost reducing!
Inner cladding is Polyurethane resin which is flexible with cracks made by transformation etc. Water can not leak outside.

Sunguard Pipe Coating Processes.

Sunguard Pipe-production Processes.

Sunguard Pipe-Anti corrosion type

LCC (Life Cycle Cost) Reducing

- Water treatment facilities need a huge cost when repairing if operated with bare cement at construction time.
- With concrete corrosion control as appropriate in advance, concrete can extend their lives.
- Also, LCC reducing is possible with optimal preventive maintenance rather than repairing after gotten deterioration.

Thank you for the attention!

Solution of Water Infra Business Operation & Maintenance ReDu Water Transmission

Fourth Meeting of "the PPP Council for Overseas Water Infrastructure" 1st February 2013 Tokyo, Japan

> NISHIMURA Munenori TGT Infrastructure Business Department TORISHIMA PUMP MFG.CO, LTD.

Contents

- 1. Introduction of Torishima
- 2. Reduction of Energy and CO₂ Emission
- 3. Imagine without Torishima
- 4. Water Transmission
- 5. ReDu
- 6. Operation and Maintenance

TORISHIMA PUMP MFG.CO, LTD. Since 1919

Since 1919

() TORISHIMA

TORISHIMA Pumps have been developed, modified to customer's needs

> Business Domain

High-Tech Pump

High-value-added pump available for various needs

- Power generation plant, Desalination plant,
- Petro-chemical plant, etc.

- Wind power generation
- Mini & Micro hydro generation
- Bio gas & mass co-generation
- Water treatment & Resource recycle

() TORISHIMA

EPC Projects

Full turn-key construction water works / transmission, Drainage, Irrigation Balance of Plant etc.

 Operation & Maintenance
 Solution provider Spare parts, repair facilities,

Service, Maintenance, Up-Grade, REDU (Re Engineering and Design Up) Total plant maintenance solutions

Reduction of Energy and CO₂ Emission

Over 90% of the life cycle costs (LCC) for pumps are electricity bill for operation Big reduction of LCC and CO₂ emission by Eco Pump

< Operating condition> 8, 760hours/year, 15years (131,400hours)

PUMP:CAL SIZE 32~150mm
 Prerequisite :60Hz-4P
 Electric cost:10yen/kWh

Main replacement parts(The number of times of exchange) CASING (1), IMPELLER(2), SHAFT(2), WEAR RING(2), BEARING(7), GASKET(7), COUPLING(1), COUPLING RUBBER(7), MECHANICAL SEAL(7)

< Electric cost and Return of Investment >					
Pump size150mm Motor capacity75kW					
Eff. Improvement	5%	10%	15%		
Power Reduction	3.75kW	7.5kW	11.25kW		
Annual Power Reduction	32,850kWh	65,700kWh	98,550kWh		
Cost Saving	¥ 4.92 mil	¥ 9.85 mil	¥14.78mil		
Return of investment 4.6years 2.3years 1.5years					
Annual CO 2 Reduction	1 4t-CO2	28t-CO2	42 t-CO 2		

%Cost Saving=Power Reduction×131,400hours×¥10 %Rol=¥1,50mil÷(Annual Power Reduction×¥10) %C0₂emission factor is based on TEPCO figure in 2007 0.000425(t-C0₂/kWh)

Water Transmission Less Pumping Stations with High Head Pump

Transmission of Water for Long Distance Pipe Line

Shuwaihat Potable Water Transmission Project, UAE (1/2)

Long distance (140km) water supply pump for drinking water manufactured in the seawater desalination plant, Shuweihat water transmission scheme in U.A.E. (Abu Dhabi Water and Electricity Authority) (CDM800x500 : 4700kW)

() TORISHIMA

Shuwaihat Potable Water Transmission Project, UAE (2/2)

Musaafah pumping station 2,840m^{*}/h - 65m - 4690kW – 5units

Serge Vessels Dis.side : 120m^{*}/h Vessel – 16units Suc.side : 20m^{*}/h Vessel – 2units

Pumps in Water Transmission Plant (1/2)

Shuqaiq 2 (Saudi Arabia) Main Pump (MSH300/2T : 6150kW)

New Mirfa (UAE) Main Pump (MHH350/6 : 1950kW)

Pumps in Water Transmission Plant (2/2)

Melbroune (Australia) Transfer Pump (MSH450/2T : 3000kW) Al Ain (UAE) Main Pumps (CDM800x500 : 4800kW)

Re Engineer – manufacture original part Design Up – improve design of original part/pump

Re Engineering & Design Up

Pump Manufacturer's Specialty

- •Scan by 3D machine
- •3D Drawing
- •Hydraulic analysis
- •Manufacturing Drawings
- Manufacturing

() TORISHIMA

3D Scan of Double Entry Volute for 5MW BRP

() TORISHIMA

3D Solid Model of Double Entry Volute for 5MW BRP

Manufacturing Facility Machining Shop

Testing Facility ISO 9906 JIS B8301 : 2000 ANSI/HI 6.2000

Low Pressure Facility Test

380-600V & 3.3 kV - 6.6 kV Motor Control Center with Variable Spee Drive

Low Pressure Facility Test

High Pressure PumpTesting Control Board

Central Service Workshop

Pump Services

- Installation
- Commissioning
- Repair
- Refurbishment
- Performance Analysis
- Upgrade
- Spareparts Supply
- Operate & Maintenance
- Troubleshooting

TorishimaGuna Engineering Services

Line of Services

Field Services

- Condition Monitoring
- In-Situ Vibration Analysis & Balance
- On Site Efficiency Testing
- Installation & Commissioning

TorishimaGuna Engineering Services

Thank you for your attention

<Aquarator>
The World's First
Submerged Mechanical
Aerator/Agitator

HANSHIN ENGINEERING Co., Ltd.

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

Company Summary

<HANSHIN ENGINEERING Co., Ltd.>

- Establishment: November 13, 1950
- Business: Gear speed reducers/ Waterway facilities equipment/ Water-treatment facilities equipment/ Industrial facilities equipment
- **Capital:** 72,600,000 yen
- President: Hiroyuki Izui
- Employees: 100

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

Company History

- 1950 Establishment of HANSHIN ENGINEERING Co., Ltd.
- 1970 Development, production and sales of drive unit for sludge collector, thickener, clarifier
- 1975 Development, production and sales of the world's first submerged mechanical aerator/agitator (Aquarator)
- 1987 Development, production and sales of AS controller
- **1992** Delivery of supernatant water discharger
- □ 2004 Delivery of bio processing unit
- □ 2006 Delivery of turbo blower

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

Environmental Equipments

This is a image.

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

System Flow for Wastewater Treatment

Aquarator

Aquarator = the world's first Submerged Mechanical Aerator/Agitator

<F Type> F-15 (1.5kW) F-22 (2.2kW) F-37 (3.7kW) F-55 (5.5kW) F-75 (7.5kW) F-110 (11.0kW) F-150 (15.0kW) F-185 (18.5kW) F-220 (22.0kW) F-300 (30.0kW)

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

Problems of Existing Aerator

<Problems for environment & pollution aspect>

- Energy efficiency is bad.
- Occur noise and vibration.
- Make dispersion sewage mist.
- -> Change for the worse sanitary conditions.
- Accumulate sludge.
- -> Occur bad smell.

-> Change for the worse treated water quality.

阪神動力機械株式会社

Paper Mill in Thailand (Activated Sludge Process) HANSHIN ENGINEERING Co., Ltd.

Comparison of Energy Cost

Aeration system	Submerged mechanical aeration/agitation system (Aquarator + Blower)	Surface aeration system (Surface aerator)	
	<unit number=""></unit>	<unit number=""></unit>	
	21 units	31 units	
Electrical	<1 unit>	<1 unit>	
power	P = 45.1 kWh	P = 55kWh	
·	P1 + P2 = 947 kWh	P1 = 1705 kWh	
Energy reduction	44.5% (758kWh)		
Cost effective	385,125USD (6,640,080kW/year)		

* Commercial standard electricity rate (1kW/1h) of Bangkok, Thailand was estimated as 0.058USD. The data is based on Japan External Trade Organization (JETRO). http://www.jetro.go.jp/world/search/cost/

Paper Mill in Thailand

11

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

Operation Situation of the Aquarator

Introduction Case of the Aquarator

Aquarator is the most suitable equipment for biological treatment of industrial wastewater.

Aquarator Installation position

[Aeration tank]

HANSHIN ENGINEERING Co., Ltd.

13

阪神動力機械株式会社

Advantage of the Aquarator

□ The equipment is able to be used flexibly as aerobic agitation or anaerobic agitation.

Installation Situation of the Aquarator

Feature of the Aquarator

- Equipment installation and removal is easy.
- Water and sludge are not required to be removed when installing or removing the equipment because the main body is not fixed on a tank bottom.

阪神動力機械株式会社

16

Record, Assessment, Certification, Specification in Japan

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

17

18

HANSHIN ENGINEERING Co., Ltd.

2-26-7 Shikanjima, Konohana-ku, Osaka 554-0014, Japan TEL. +81-6-6461-6551 FAX. +81-6-6461-6555

<Branch Office (Tokyo)>

4th Floor, Shibakaga Bldg., 2-3-1 Shibakoen, Minato-ku, Tokyo 105-0011, Japan TEL. +81-3-5776-1401 FAX. +81-3-3438-2171

<Factory (Hikami)>

1383 Shingo, Hikami-cho, Tanba-shi, Hyogo 669-3571, Japan TEL. +81-795-82-3422 FAX. +81-795-82-3424

<Sales department> Hirotaka Kawashima kawashima@hanshin-pm.co.jp

http://www.hanshin-pm.co.jp/

阪神動力機械株式会社

HANSHIN ENGINEERING Co., Ltd.

February 1, 2013

A Glance of METAWATER

METAWATER is one of the leading engineering companies in Japan with unique products and wide range of experiences from product supply, EPC up to O&M service incl. PFI projects.

Outline

Capital	JPY 7.5 Bil. (ca. US\$ 85 Mil.)	
Net Sales	JPY 100 Bil. (FY2011) (ca. US\$ 1.2 Bil.)	
Employees	es 1,800 (consolidated)	
Location (JPN)	Tokyo (Head Office), Hino Office, Nagoya Office	
(Intl.)	(Intl.) China, Korea, Germany, USA, Vietnam	

Ceramic Membrane

more than 30% of share in Japan

<u>Ozonizer</u>

Top supplier (more than 170 installations)

Sludge Incineration

more than 25% of share (more than 45% in large scale)

METAWATER

METAWATER

more than 10 installations

Process Comparison

METAWATER

The new process can achieve the high effluent quality with lower energy consumption and easier O&M than ASP

	New Process	Anaerobic Lagoon * (AL)	Activated Sludge Process (ASP)
Power Demand	Pump (Head 7m)	* Common in Vietnam Pump (Head 4m)	Pump (Head 4m) Aeration
	0.05 kWh/m ³	0.02 kWh∕m³	0.30 kWh∕m³
Effluent BOD	10~20 mg/L	30∼90 mg∕L	10 mg/L
O&M	Easy	Easy	Not easy
Evaluation	Good	NG	NG

Pilot Plant in Da Nang

METAWATER

High Rate Filtrer

METAWATER

Example of Water Quality Data (2012/11/5~11/27)

- Although Inlet BOD and SS was low due to the rainy season, the high-rate filter and the trickling filter worked as expected

METAW/ATER

- BOD and SS removal rate by the high-rate filter is about 50 60%, which is higher than that of primary clarifier
- Data accumulation will be continued including the dry season

Pilot test will continue through November, 2013

